将开始时间和总持续时间转换为每小时经过的时间

Convert start time and total duration to elapsed time per hour

我有关于开始时间的数据('startTime',一个日期时间变量,POSIXct)和以分钟为单位的持续时间('duration_minutes'):

df <- data.frame(id = c(1, 2, 3),
                 startTime = as.POSIXct(c("2018-01-01 12:15:31",
                                          "2018-01-02 23:43:00",
                                          "2018-01-03 11:00:11")), 
                 duration_minutes = c(315, 120, 45))

我想将开始时间和持续时间转换为每小时经过的时间,从开始时间的那一小时到持续时间结束的最后一小时:

df_result <- data.frame(id = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 3),
                        startTime = c("2018-01-01 12:15:31","2018-01-01 13:00:00",
                                "2018-01-01 14:00:00","2018-01-01 15:00:00",
                                "2018-01-01 16:00:00","2018-01-01 17:00:00",

                                "2018-01-02 23:43:00","2018-01-03 00:00:00",
                                "2018-01-03 01:00:00",

                                "2018-01-03 11:00:11"),
                        duration_minutes = c(44.48, 60, 60, 60, 60, 30.5, 17, 60, 43, 45))

请提供可能的解决方案。

试试这个:

library(data.table)
library(lubridate)
library(magrittr)

df <-
  setDT(df)[, start_ceiling := ceiling_date(startTime, "hour", change_on_boundary = TRUE)] %>%
  .[, `:=` (
    reps = ifelse(
      startTime + (duration_minutes * 60) <= start_ceiling, 1, pmax(2, floor(duration_minutes / 60) + 1)
    ),
    initial_diff = as.numeric(difftime(start_ceiling[1], startTime[1], units = "mins"))
  ), by = id] %>%
  .[, df[df[, rep(.I, reps)]]] %>%
  .[, startTime := pmax(startTime, floor_date(startTime, "hour") + hours(0:(.N - 1))), by = id] %>%
  .[reps > 1, duration_minutes := c(initial_diff[.N], 
                                    rep(60, reps[.N] - 2),
                                    (duration_minutes[.N] - initial_diff[.N]) %% 60), by = id] %>%
  .[!(duration_minutes == 0 & reps > 1), ] %>%
  .[, c("reps", "start_ceiling", "initial_diff") := NULL]

我已经用我们目前收集的所有场景对此进行了测试,这是输出:

    id           startTime duration_minutes
 1:  1 2018-01-01 12:15:31         44.48333
 2:  1 2018-01-01 13:00:00         60.00000
 3:  1 2018-01-01 14:00:00         60.00000
 4:  1 2018-01-01 15:00:00         60.00000
 5:  1 2018-01-01 16:00:00         60.00000
 6:  1 2018-01-01 17:00:00         30.51667
 7:  2 2018-01-02 23:43:00         17.00000
 8:  2 2018-01-03 00:00:00         60.00000
 9:  2 2018-01-03 01:00:00         43.00000
10:  3 2018-01-03 11:00:11         45.00000
11:  4 2018-01-04 10:00:00         60.00000
12:  4 2018-01-04 11:00:00          5.00000
13:  5 2018-01-05 00:00:00         60.00000
14:  6 2018-01-06 11:35:00         25.00000
15:  6 2018-01-06 12:00:00         10.00000
16:  7 2018-01-07 00:00:00         60.00000
17:  7 2018-01-07 01:00:00         60.00000

使用的数据:

df <- data.frame(
  id = c(1, 2, 3, 4, 5, 6, 7),
  startTime = as.POSIXct(
    c(
      "2018-01-01 12:15:31",
      "2018-01-02 23:43:00",
      "2018-01-03 11:00:11",
      "2018-01-04 10:00:00",
      "2018-01-05 00:00:00",
      "2018-01-06 11:35:00",
      "2018-01-07 00:00:00"
    )
  ),
  duration_minutes = c(315, 120, 45, 65, 60, 35, 120)
)

df

  id           startTime duration_minutes
1  1 2018-01-01 12:15:31              315
2  2 2018-01-02 23:43:00              120
3  3 2018-01-03 11:00:11               45
4  4 2018-01-04 10:00:00               65
5  5 2018-01-05 00:00:00               60
6  6 2018-01-06 11:35:00               35
7  7 2018-01-07 00:00:00              120

另一种可能性:

library(data.table)
library(lubridate)

setDT(df)
df[ , ceil_start := ceiling_date(start, "hour", change_on_boundary = TRUE)]

df[ , {
  if(difftime(ceil_start, start, units = "min") > dur) {
    .SD[ , .(start, dur)]
  } else {
    end <- start + dur * 60
    time <- c(start,
              seq(from = ceil_start,
                  to = floor_date(end, "hour"),
                  by = "hour"),
              end)
    .(start = head(time, -1), dur = `units<-`(diff(time), "mins"))
  }
},
by = id]

#     id               start           dur
# 1:   1 2018-01-01 12:15:31 44.48333 mins
# 2:   1 2018-01-01 13:00:00 60.00000 mins
# 3:   1 2018-01-01 14:00:00 60.00000 mins
# 4:   1 2018-01-01 15:00:00 60.00000 mins
# 5:   1 2018-01-01 16:00:00 60.00000 mins
# 6:   1 2018-01-01 17:00:00 30.51667 mins
# 7:   2 2018-01-02 23:43:00 17.00000 mins
# 8:   2 2018-01-03 00:00:00 60.00000 mins
# 9:   2 2018-01-03 01:00:00 43.00000 mins
# 10:  3 2018-01-03 11:00:11 45.00000 mins
# 11:  4 2018-01-03 11:35:00 25.00000 mins
# 12:  4 2018-01-03 12:00:00 10.00000 mins
# 13:  5 2018-01-03 00:00:00 60.00000 mins
# 14:  5 2018-01-03 01:00:00  0.00000 mins

说明

data.frame 转换为 data.table (setDT)。将开始时间四舍五入到最接近的小时(ceiling_date(start, "hour", ...)。使用 change_on_boundary = TRUE 可以更轻松地处理没有分钟和秒的时间(不在数据中,但经过测试)。

要处理结束时间(开始+持续时间)与开始时间在同一小时(例如id = 3)的情况,请检查舍入时间和开始时间之间的差异是否大于持续时间(if(difftime(ceil_start, start, units = "min") > dur))).如果是这样,只需 select 开始和持续时间列 (.SD[ , .(start, dur))。

对于其他情况(else),计算结束时间:end <- start + dur * 60。创建一个从向上取整的开始时间 ('ceil_start') 到向下取整的结束时间的序列,以小时为增量 (seq(from = ceil_start, to = floor_date(end, "hour"), by = "hour"))。连接 'start' 和 'end' 次。 Return 除最后一次外的所有时间(head(time, -1) 并以分钟为单位计算时间步长之间的差异 (`units<-`(diff(time), "mins"))。

对于 H:M:S = 00:00:00 且持续时间是 60 分钟的倍数的时间,如 id = 5,当前解决方案给出了最后一小时持续时间为 0 分钟的行。在等待更优雅的解决方案时,一种快速而肮脏的方法就是删除持续时间 = 0 的此类行。


数据

请注意,我添加了原始数据中未包含的案例,id = 4(另请参阅 )和 id = 5。

df <- data.frame(id = 1:5,
                 start = as.POSIXct(c("2018-01-01 12:15:31",
                                      "2018-01-02 23:43:00",
                                      "2018-01-03 11:00:11",
                                      "2018-01-03 11:35:00",
                                      "2018-01-03 00:00:00")), 
                 dur = c(315, 120, 45, 35, 60))