在子矩阵上找到逐行最大值的最快方法

Fastest way to find the row-wise maximum over submatrices

在一个性能关键代码中,我得到了 2 个大矩阵,(大小以千为单位)

期待, 实现

大小相同但包含不同的值。这些矩阵都以相同的方式在列上进行分区, 每个子矩阵都有不同数量的列。像这样

submat1     submat2     submat3
-----------------------------
|...........| .......| .....|
|...........| .......| .....|
|...........| .......| .....|
|...........| .......| .....|
|...........| .......| .....|
-----------------------------

我需要最快的方式来填充第三个矩阵,如下所示 (伪代码)

for each submatrix
    for each row in submatrix
        pos= argmax(expectations(row,start_submatrix(col):end_submatrix(col)))
        result(row,col) =  realization(row,pos)

也就是对于每个子矩阵,我扫描每一行,找到最大元素在期望子矩阵中的位置, 并将实现矩阵对应的值放入结果矩阵

我希望有最快的方法来完成它,也许是通过智能 parallelization/cache 优化,因为这个函数是我在算法上花费大约 40% 的时间的地方. 我使用 visual studio 15.9.6 和 Windows 10.

这是我的参考 C++ 实现,我在其中使用 Armadillo(列优先)矩阵

#include <iostream>
#include <chrono>
#include <vector>

///Trivial implementation, for illustration purposes
void find_max_vertical_trivial(const arma::mat& expectations, const arma::mat& realizations, arma::mat& results, const arma::uvec & list, const int max_size_action)
{
    const int number_columns_results = results.n_cols;
    const int number_rows = expectations.n_rows;
#pragma omp parallel for schedule(static)
    for (int submatrix_to_process = 0; submatrix_to_process < number_columns_results; submatrix_to_process++)
    {
        const int start_loop = submatrix_to_process * max_size_action;
        //Looping over rows
        for (int current_row = 0; current_row < number_rows; current_row++)
        {
            int candidate = start_loop;
            const int end_loop = candidate + list(submatrix_to_process);
            //Finding the optimal action
            for (int act = candidate + 1; act < end_loop; act++)
            {
                if (expectations(current_row, act) > expectations(current_row, candidate))
                    candidate = act;
            }
            //Placing the corresponding realization into the results
            results(current_row, submatrix_to_process) = realizations(current_row, candidate);
        }
    }
}

这是我能想到的最快的方法。有没有可能改进一下?

///Stripped all armadillo functionality, to bare C
void find_max_vertical_optimized(const arma::mat& expectations, const arma::mat& realizations, arma::mat& values, const arma::uvec & list, const int max_block)
{
    const int n_columns = values.n_cols;
    const int number_rows = expectations.n_rows;
    const auto exp_ptr = expectations.memptr();
    const auto real_ptr = realizations.memptr();
    const auto values_ptr = values.memptr();
    const auto list_ptr = list.memptr();
#pragma omp parallel for schedule(static)
    for (int col_position = 0; col_position < n_columns; col_position++)
    {
        const int start_loop = col_position * max_block*number_rows;
        const int end_loop = start_loop + list_ptr[col_position]*number_rows;
        const int position_value = col_position * number_rows;
        for (int row_position = 0; row_position < number_rows; row_position++)
        {
            int candidate = start_loop;
            const auto st_exp = exp_ptr + row_position;
            const auto st_real = real_ptr + row_position;
            const auto st_val = values_ptr + row_position;
            for (int new_candidate = candidate + number_rows; new_candidate < end_loop; new_candidate+= number_rows)
            {
                if (st_exp[new_candidate] > st_exp[candidate])
                    candidate = new_candidate;
            }
            st_val[position_value] = st_real[candidate];
        }
    }
}

和测试部分,我比较性能

typedef std::chrono::microseconds dur;
const double dur2seconds = 1e6;

//Testing the two methods
int main()
{
    const int max_cols_submatrix = 6; //Typical size: 3-100
    const int n_test = 500;
    const int number_rows = 2000;   //typical size: 1000-10000
    std::vector<int> size_to_test = {4,10,40,100,1000,5000 }; //typical size: 10-5000
    arma::vec time_test(n_test, arma::fill::zeros);
    arma::vec time_trivial(n_test, arma::fill::zeros);

    for (const auto &size_grid : size_to_test) {
        arma::mat expectations(number_rows, max_cols_submatrix*size_grid, arma::fill::randn);
        arma::mat realizations(number_rows, max_cols_submatrix*size_grid, arma::fill::randn);
        arma::mat reference_values(number_rows, size_grid, arma::fill::zeros);
        arma::mat optimized_values(number_rows, size_grid, arma::fill::zeros);
        arma::uvec number_columns_per_submatrix(size_grid);
        //Generate random number of columns per each submatrices
        number_columns_per_submatrix= arma::conv_to<arma::uvec>::from(arma::vec(size_grid,arma::fill::randu)*max_cols_submatrix);
        for (int i = 0; i < n_test; i++) {
            auto st_meas = std::chrono::high_resolution_clock::now();
            find_max_vertical_trivial(expectations, realizations, optimized_values, number_columns_per_submatrix, max_cols_submatrix);
            time_trivial(i) = std::chrono::duration_cast<dur>(std::chrono::high_resolution_clock::now() - st_meas).count() / dur2seconds;;
            st_meas = std::chrono::high_resolution_clock::now();
            find_max_vertical_optimized(expectations, realizations, reference_values, number_columns_per_submatrix, max_cols_submatrix);
            time_test(i) = std::chrono::duration_cast<dur>(std::chrono::high_resolution_clock::now() - st_meas).count() / dur2seconds;
            const auto diff = arma::sum(arma::sum(arma::abs(reference_values - optimized_values)));
            if (diff > 1e-3)
            {
                std::cout <<"Error: " <<diff << "\n";
                throw std::runtime_error("Error");
            }
        }
        std::cout <<"grid size:"<< size_grid << "\n";
        const double mean_time_trivial = arma::mean(time_trivial);
        const double mean_time_opt = arma::mean(time_test);

        std::cout << "Trivial: "<< mean_time_trivial << " s +/-" << 1.95*arma::stddev(time_trivial) / sqrt(n_test) <<"\n";
        std::cout << "Optimized: "<< mean_time_opt <<" s ("<< (mean_time_opt/ mean_time_trivial-1)*100.0 <<" %) "<<"+/-" << 1.95*arma::stddev(time_test) / sqrt(n_test)  << "\n";
    }
}

您可以使用 SIMD 循环优化缓存,该循环可能读取 8 或 12 个完整的行向量,然后为下一列读取相同的行。 (因此对于 32 位元素,并行 8*4 或 8*8 行)。您使用的 MSVC 支持 x86 SSE2 / AVX2 内在函数,例如 _mm256_load_ps_mm256_max_ps,或 _mm256_max_epi32.

如果您从对齐边界开始,那么希望您读取了您接触的所有缓存行。然后在输出中使用相同的访问模式。 (所以你正在读取 2 到 6 个连续的缓存行,在读/写块之间有一个跨度。)

或者可能将 tmp 结果记录在紧凑的地方(每行每段 1 个值),然后再将相同元素的更多缓存写入副本吹走到每一列。但是尝试两种方式;混合读取和写入可能会让 CPU 更好地重叠工作并找到更多内存级并行性。