尝试从本地 Airflow 运行 DataProcSparkOperator 任务时出现 HttpError 400

HttpError 400 when trying to run DataProcSparkOperator task from a local Airflow

我正在测试我曾经在 Google Composer 上 运行 在本地安装的 Airflow 上没有错误的 DAG。 DAG 启动 Google Dataproc 集群,运行 Spark 作业(位于 GS 存储桶上的 JAR 文件),然后关闭集群。

DataProcSparkOperator 任务每次都立即失败并出现以下错误:

googleapiclient.errors.HttpError: <HttpError 400 when requesting https://dataproc.googleapis.com/v1beta2/projects//regions/global/jobs:submit?alt=json returned "Invalid resource field value in the request.">

看起来好像 URI 是 incorrect/incomplete,但我不确定是什么原因造成的。下面是我的 DAG 的主要部分。所有其他任务都没有错误地执行,唯一的区别是 DAG 在 Composer 上不再是 运行:

default_dag_args = {
    'start_date': yesterday,
    'email': models.Variable.get('email'),
    'email_on_failure': True,
    'email_on_retry': True,
    'retries': 0,
    'retry_delay': dt.timedelta(seconds=30),
    'project_id': models.Variable.get('gcp_project'),
    'cluster_name': 'susi-bsm-cluster-{{ ds_nodash }}'
}

def slack():
    '''Posts to Slack if the Spark job fails'''
    text = ':x: The DAG *{}* broke and I am not smart enough to fix it. Check the StackDriver and DataProc logs.'.format(DAG_NAME)
    s.post_slack(SLACK_URI, text)

with DAG(DAG_NAME, schedule_interval='@once',
    default_args=default_dag_args) as dag:
    # pylint: disable=no-value-for-parameter

    delete_existing_parquet = bo.BashOperator(
        task_id = 'delete_existing_parquet',
        bash_command = 'gsutil rm -r {}/susi/bsm/bsm.parquet'.format(GCS_BUCKET)
    )

    create_dataproc_cluster = dpo.DataprocClusterCreateOperator(
        task_id = 'create_dataproc_cluster',
        num_workers = num_workers_override or models.Variable.get('default_dataproc_workers'),
        zone = models.Variable.get('gce_zone'),
        init_actions_uris = ['gs://cjones-composer-test/susi/susi-bsm-dataproc-init.sh'],
        trigger_rule = trigger_rule.TriggerRule.ALL_DONE
    )

    run_spark_job = dpo.DataProcSparkOperator(
       task_id = 'run_spark_job',
       main_class = MAIN_CLASS,
       dataproc_spark_jars = [MAIN_JAR],
       arguments=['{}/susi.conf'.format(CONF_DEST), DATE_CONST]
    )

    notify_on_fail = po.PythonOperator(
        task_id = 'output_to_slack',
        python_callable = slack,
        trigger_rule = trigger_rule.TriggerRule.ONE_FAILED
    )

    delete_dataproc_cluster = dpo.DataprocClusterDeleteOperator(
       task_id = 'delete_dataproc_cluster',
       trigger_rule = trigger_rule.TriggerRule.ALL_DONE
    )

    delete_existing_parquet >> create_dataproc_cluster >> run_spark_job >> delete_dataproc_cluster >> notify_on_fail

如有任何帮助,我们将不胜感激!

DataprocClusterCreateOperator不同,DataProcSparkOperator不将project_id作为参数。它从 Airflow 连接中获取(如果不指定 gcp_conn_id 参数,则默认为 google_cloud_default)。您必须配置您的连接。

在 Composer 中 运行 DAG 时看不到这个的原因是 Composer configures google_cloud_default 连接。