如何从数据集中删除无用的元素

How to remove not useful elements from a dataset

我有一个数据集,如下所示:

 {0: {"address": 0,
         "ctag": "TOP",
         "deps": defaultdict(<class "list">, {"ROOT": [6, 51]}),
         "feats": "",
         "head": "",
         "lemma": "",
         "rel": "",
         "tag": "TOP",
         "word": ""},
     1: {"address": 1,
         "ctag": "Ne",
         "deps": defaultdict(<class "list">, {"NPOSTMOD": [2]}),
         "feats": "_",
         "head": 6,
         "lemma": "اشرف",
         "rel": "SBJ",
         "tag": "Ne",
         "word": "اشرف"},

我想从这个数据集中删除 "deps":...?。我试过这段代码但没有用,因为 "depts": 的值在字典的每个元素中都不同。

import re
import simplejson as simplejson

with open("../data/cleaned.txt", 'r') as fp:
    lines = fp.readlines()
    k = str(lines)
    a = re.sub(r'\d:', '', k) # this is for removing numbers like `1:{..`
    json_data = simplejson.dumps(a)
    #print(json_data)
    n = eval(k.replace('defaultdict(<class "list">', 'list'))
    print(n)

尝试

import json
with open("../data/cleaned.txt", 'r') as fp:
    data = json.load(fp)
    for key, value in data.items():
        value.pop("deps", None)

现在您将拥有不含 deps 的数据。如果您想将记录转储到新文件

json.dump(data, "output.json")

怎么样

#!/usr/bin/env python
# -*- coding: utf-8 -*-

data = {0: {"address": 0,
            "ctag": "TOP",
            "deps": 'something',
            "feats": "",
            "head": "",
            "lemma": "",
            "rel": "",
            "tag": "TOP",
            "word": ""},
        1: {"address": 1,
            "ctag": "Ne",
            "deps": 'something',
            "feats": "_",
            "head": 6,
            "lemma": "اشرف",
            "rel": "SBJ",
            "tag": "Ne",
            "word": "اشرف"}}

for value in data.values():
    if 'deps' in value:
        del value['deps']

正确的方法是修复生成文本文件的代码。这个 defaultdict(<class "list">, {"ROOT": [6, 51]}) 暗示它在需要更智能的格式时使用了简单的 repr

如果无法真正修复,以下只是一个穷人的解决方法。

摆脱 "deps": ... 很容易:一次读取文件一行并丢弃任何以 ""deps" 开头的行(忽略开头的空格)就足够了。但这还不够,因为当 json 坚持键只能是文本时,文件包含数字键。因此必须识别并引用数字键。

这可能允许加载文件:

进口重新 将简单json导入为简单json

with open("../data/cleaned.txt", 'r') as fp:
    k = ''.join(re.sub(r'(?<!\w)(\d+)', r'""',line)
        for line in fp if not line.strip().startswith('"deps"'))

# remove an eventual last comma
k = re.sub(r',[\s\n]*$', '', k, re.DOTALL)

# uncomment if the file does not contain the last }
# k += '}'

js = json.loads(k)