ifelse() 函数 - 参考第二天

ifelse() function - refer to the following day

我有一个包含 2 列的数据框:日期和 return。

df <- tibble( 
date = lubridate::today() +0:9,
return= c(1,2.5,2,3,5,6.5,1,9,3,2))

现在我想添加带有 ifelse 条件的第三列。 如果第 t 天的 return 高于 3.5,则在随后的第 t+1 天重新运行是 NA(否则 = 第 t 天的 return)。

这是我想要的输出:

date         return      retrun_subsequent_day
<date>       <dbl>       <dbl>
1 2019-03-14    1        1
2 2019-03-15    2.5      2.5
3 2019-03-16    2        2
4 2019-03-17    3        3
5 2019-03-18    5        5
6 2019-03-19    6.5      NA
7 2019-03-20    1        NA
8 2019-03-21    9        9
9 2019-03-22    3        NA
10 2019-03-23   2        2

有人可以描述一下我如何制定这个条件吗?

base R 方法是创建 'return' 的副本作为新列 'return_sub',然后使用数字索引 ('i1'),分配值至 NA

i1 <- which(df$return > 3.5)
df$return_subsequent_day <- df$return
df$return_subsequent_day[pmin(i1 +1, nrow(df))] <- NA
df$return_subsequent_day
#[1] 1.0 2.5 2.0 3.0 5.0  NA  NA 9.0  NA 2.0

使用 lagdplyr 中的 mutate。对于滞后,我们将前一行的 return 值与 3.5 进行比较:如果它大于或等于我们取 NA,如果它更小我们取 return 值当前行

library(dplyr)

df <- df %>% mutate(return_subsequent_day = ifelse(lag(return, default = 0) >= 3.5, NA, return))

输出:

# A tibble: 10 x 3
   date       return return_subsequent_day
   <date>      <dbl>                 <dbl>
 1 2019-03-14    1                     1  
 2 2019-03-15    2.5                   2.5
 3 2019-03-16    2                     2  
 4 2019-03-17    3                     3  
 5 2019-03-18    5                     5  
 6 2019-03-19    6.5                  NA  
 7 2019-03-20    1                    NA  
 8 2019-03-21    9                     9  
 9 2019-03-22    3                    NA  
10 2019-03-23    2                     2  

使用 ifelse 的简单解决方案

df$return_sub_day <- ifelse(dplyr::lag(df$return) > 3.5, NA ,df$return)
df$return_sub_day[1] <- df$return[1]

data table 方式,对更大的数据集有效-

  data.table::setDT(df)[,return_sbq:=ifelse(shift(return,fill=0) >= 3.5, NA, return)]

> df
          date return return_sbq
 1: 2019-03-14    1.0        1.0
 2: 2019-03-15    2.5        2.5
 3: 2019-03-16    2.0        2.0
 4: 2019-03-17    3.0        3.0
 5: 2019-03-18    5.0        5.0
 6: 2019-03-19    6.5         NA
 7: 2019-03-20    1.0         NA
 8: 2019-03-21    9.0        9.0
 9: 2019-03-22    3.0         NA
10: 2019-03-23    2.0        2.0

混淆,但简短有趣:

df$return_subsequent_day <- df$return * lag(df$return < 3.5, 1, 1)^NA