构建自动编码器时收到错误
Error Received while building the Auto encoder
我正在尝试使用 CNN 作为编码器和 LSTM 作为解码器为我的学期项目构建一个自动编码器,但是当我显示模型的摘要时。我收到以下错误:
ValueError: Input 0 is incompatible with layer lstm_10: expected ndim=3, found ndim=2
x.shape = (45406, 100, 100)
y.shape = (45406,)
我已经尝试过更改 LSTM 输入的形状,但没有成功。
def keras_model(image_x, image_y):
model = Sequential()
model.add(Lambda(lambda x: x / 127.5 - 1., input_shape=(image_x, image_y, 1)))
last = model.output
x = Conv2D(3, (3, 3), padding='same')(last)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), padding='valid')(x)
encoded= Flatten()(x)
x = LSTM(8, return_sequences=True, input_shape=(100,100))(encoded)
decoded = LSTM(64, return_sequences = True)(x)
x = Dropout(0.5)(decoded)
x = Dense(400, activation='relu')(x)
x = Dense(25, activation='relu')(x)
final = Dense(1, activation='relu')(x)
autoencoder = Model(model.input, final)
autoencoder.compile(optimizer="Adam", loss="mse")
autoencoder.summary()
model= keras_model(100, 100)
鉴于您使用的是 LSTM,您需要一个时间维度。所以你的输入形状应该是:(time, image_x, image_y, nb_image_channels)。
我建议更深入地了解自动编码器、LSTM 和 2D 卷积,因为它们在这里一起发挥作用。这是一个有用的介绍:https://machinelearningmastery.com/lstm-autoencoders/ and this https://blog.keras.io/building-autoencoders-in-keras.html)。
另请查看此示例,有人使用 Conv2D 实现了 LSTM。 TimeDistributed 层在这里很有用。
但是,为了修复错误,您可以添加一个 Reshape() 层来伪造额外的维度:
def keras_model(image_x, image_y):
model = Sequential()
model.add(Lambda(lambda x: x / 127.5 - 1., input_shape=(image_x, image_y, 1)))
last = model.output
x = Conv2D(3, (3, 3), padding='same')(last)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), padding='valid')(x)
encoded= Flatten()(x)
# (50,50,3) is the output shape of the max pooling layer (see model summary)
encoded = Reshape((50*50*3, 1))(encoded)
x = LSTM(8, return_sequences=True)(encoded) # input shape can be removed
decoded = LSTM(64, return_sequences = True)(x)
x = Dropout(0.5)(decoded)
x = Dense(400, activation='relu')(x)
x = Dense(25, activation='relu')(x)
final = Dense(1, activation='relu')(x)
autoencoder = Model(model.input, final)
autoencoder.compile(optimizer="Adam", loss="mse")
print(autoencoder.summary())
model= keras_model(100, 100)
我正在尝试使用 CNN 作为编码器和 LSTM 作为解码器为我的学期项目构建一个自动编码器,但是当我显示模型的摘要时。我收到以下错误:
ValueError: Input 0 is incompatible with layer lstm_10: expected ndim=3, found ndim=2
x.shape = (45406, 100, 100)
y.shape = (45406,)
我已经尝试过更改 LSTM 输入的形状,但没有成功。
def keras_model(image_x, image_y):
model = Sequential()
model.add(Lambda(lambda x: x / 127.5 - 1., input_shape=(image_x, image_y, 1)))
last = model.output
x = Conv2D(3, (3, 3), padding='same')(last)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), padding='valid')(x)
encoded= Flatten()(x)
x = LSTM(8, return_sequences=True, input_shape=(100,100))(encoded)
decoded = LSTM(64, return_sequences = True)(x)
x = Dropout(0.5)(decoded)
x = Dense(400, activation='relu')(x)
x = Dense(25, activation='relu')(x)
final = Dense(1, activation='relu')(x)
autoencoder = Model(model.input, final)
autoencoder.compile(optimizer="Adam", loss="mse")
autoencoder.summary()
model= keras_model(100, 100)
鉴于您使用的是 LSTM,您需要一个时间维度。所以你的输入形状应该是:(time, image_x, image_y, nb_image_channels)。
我建议更深入地了解自动编码器、LSTM 和 2D 卷积,因为它们在这里一起发挥作用。这是一个有用的介绍:https://machinelearningmastery.com/lstm-autoencoders/ and this https://blog.keras.io/building-autoencoders-in-keras.html)。
另请查看此示例,有人使用 Conv2D
但是,为了修复错误,您可以添加一个 Reshape() 层来伪造额外的维度:
def keras_model(image_x, image_y):
model = Sequential()
model.add(Lambda(lambda x: x / 127.5 - 1., input_shape=(image_x, image_y, 1)))
last = model.output
x = Conv2D(3, (3, 3), padding='same')(last)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), padding='valid')(x)
encoded= Flatten()(x)
# (50,50,3) is the output shape of the max pooling layer (see model summary)
encoded = Reshape((50*50*3, 1))(encoded)
x = LSTM(8, return_sequences=True)(encoded) # input shape can be removed
decoded = LSTM(64, return_sequences = True)(x)
x = Dropout(0.5)(decoded)
x = Dense(400, activation='relu')(x)
x = Dense(25, activation='relu')(x)
final = Dense(1, activation='relu')(x)
autoencoder = Model(model.input, final)
autoencoder.compile(optimizer="Adam", loss="mse")
print(autoencoder.summary())
model= keras_model(100, 100)