元组迭代向量化

tuple iteration vectorization

我有一个 pandas 代码,它正在迭代元组,我正在尝试对其进行矢量化。

我正在迭代的元组列表,如果是这样的话:

[('Morden', 35672, 'Morden Hall Park, Surrey'),
 ('Morden', 73995, 'Morden Hall Park, Surrey'),
 ('Newbridge', 120968, 'Newbridge, Midlothian'),
 ('Stroud', 127611, 'Stroud, Gloucestershire')]

工作元组迭代代码是:

for tuple_ in result_tuples:
    listing_looking_ins1.loc[:,'looking_in']\ 
    [(listing_looking_ins1.listing_id ==tuple_[1]) &
     (listing_looking_ins1.looking_in ==tuple_[0])] = tuple_[2]

我尝试编写一个 func 与 apply 方法一起使用,但它不起作用:

result_tuples_df = pd.DataFrame(result_tuples)

def replace_ (row):
    row.loc[:,'looking_in'][(listing_looking_ins1.listing_id\ 
    \==result_tuples_df[1]) &
    (listing_looking_ins1.looking_in\==result_tuples_df[0])] \
     = result_tuples_df[2]

listing_looking_ins1.apply(replace_, axis=1)

谢谢!

您可以将您的元组列表转换为 DataFrame 并将其与原始合并:

result_tuples_df = pd.DataFrame(result_tuples,
                                columns=['listing_id', 'looking_in', 'result'])

df = listing_looking_ins1.merge(result_tuples_df)

print(df)

输出:

  listing_id  looking_in                    result
0     Morden       35672  Morden Hall Park, Surrey
1     Morden       73995  Morden Hall Park, Surrey
2  Newbridge      120968     Newbridge, Midlothian
3     Stroud      127611   Stroud, Gloucestershire

然后,如果您想在 looking_in 列中获得结果:

df.drop('looking_in', 1).rename(columns={'result': 'looking_in'})

输出:

  listing_id                looking_in
0     Morden  Morden Hall Park, Surrey
1     Morden  Morden Hall Park, Surrey
2  Newbridge     Newbridge, Midlothian
3     Stroud   Stroud, Gloucestershire

P.S。在您的代码中,您设置的值是:

listing_looking_ins1.loc[:,'looking_in'][...] = ...

这是 DataFrame 副本上的设置值。请参阅 How to deal with SettingWithCopyWarning in Pandas? 了解为什么以及如何避免这样做

P.P.S。既然你询问了向量化和使用应用,你可能还想看看这个答案 on performance of different operations