从函数调用时显示混淆矩阵
Display confusion matrix when called from a function
我有一个从 scikit learn 导入随机森林分类器的函数,我用数据拟合它,最后我想显示准确性、kappa 和混淆矩阵。除了打印混淆矩阵外,所有工作正常。我没有收到任何错误,但是混淆矩阵没有打印出来。
我试过调用 print(cm)
并且它有效,但它没有以通常的 pandas 数据帧样式打印,这正是我正在寻找的。
这是代码
def rf_clf(X, y, test_size = 0.3, random_state = 42):
"""This function splits the data into train and test and fits it in a random forest classifier
to the data provided, analysing its errors (Accuracy and Kappa). Also as this is classification,
the function will output a confusion matrix"""
#Split data in train and test, as well as predictors (X) and targets, (y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state, stratify=y)
#import random forest classifier
base_model = RandomForestClassifier(random_state=random_state)
#Train the model
base_model.fit(X_train,y_train)
#make predictions on test set
y_pred=base_model.predict(X_test)
#Print Accuracy and Kappa
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
print("Kappa:",metrics.cohen_kappa_score(y_test, y_pred))
#create confusion matrix
labs = [y_test[i][0] for i in range(len(y_test))]
cm = pd.DataFrame(confusion_matrix(labs, y_pred))
cm #here is the issue. Kinda works with print(cm)
开头从sklearn导入指标。
from sklearn import metrics
当你想显示混淆矩阵时使用这个。
# Get and show confussion matrix
cm = metrics.confusion_matrix(y_test, y_pred)
print(cm)
有了这个你应该在原始文本中查看混淆矩阵。
如果你想显示带有颜色的混淆矩阵,请换一种方式:
导入
from sklearn.metrics import confusion_matrix
import pandas as pd
import seaborn as sns; sns.set()
这样使用:
cm = confusion_matrix(y_test, y_pred)
cmat_df = pd.DataFrame(cm, index=class_names, columns=class_names)
ax = sns.heatmap(cmat_df, square=True, annot=True, cbar=False)
ax.set_xlabel('Predicción')
ax.set_ylabel('Real')`
祝一切顺利!
我有一个从 scikit learn 导入随机森林分类器的函数,我用数据拟合它,最后我想显示准确性、kappa 和混淆矩阵。除了打印混淆矩阵外,所有工作正常。我没有收到任何错误,但是混淆矩阵没有打印出来。
我试过调用 print(cm)
并且它有效,但它没有以通常的 pandas 数据帧样式打印,这正是我正在寻找的。
这是代码
def rf_clf(X, y, test_size = 0.3, random_state = 42):
"""This function splits the data into train and test and fits it in a random forest classifier
to the data provided, analysing its errors (Accuracy and Kappa). Also as this is classification,
the function will output a confusion matrix"""
#Split data in train and test, as well as predictors (X) and targets, (y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state, stratify=y)
#import random forest classifier
base_model = RandomForestClassifier(random_state=random_state)
#Train the model
base_model.fit(X_train,y_train)
#make predictions on test set
y_pred=base_model.predict(X_test)
#Print Accuracy and Kappa
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
print("Kappa:",metrics.cohen_kappa_score(y_test, y_pred))
#create confusion matrix
labs = [y_test[i][0] for i in range(len(y_test))]
cm = pd.DataFrame(confusion_matrix(labs, y_pred))
cm #here is the issue. Kinda works with print(cm)
开头从sklearn导入指标。
from sklearn import metrics
当你想显示混淆矩阵时使用这个。
# Get and show confussion matrix cm = metrics.confusion_matrix(y_test, y_pred) print(cm)
有了这个你应该在原始文本中查看混淆矩阵。
如果你想显示带有颜色的混淆矩阵,请换一种方式:
导入
from sklearn.metrics import confusion_matrix import pandas as pd import seaborn as sns; sns.set()
这样使用:
cm = confusion_matrix(y_test, y_pred) cmat_df = pd.DataFrame(cm, index=class_names, columns=class_names) ax = sns.heatmap(cmat_df, square=True, annot=True, cbar=False) ax.set_xlabel('Predicción') ax.set_ylabel('Real')`
祝一切顺利!