索引不匹配时更新 pandas 数据帧的最有效方法
most efficient way to update pandas dataframe when index not match
我有两个 pandas DataFrame,我想用另一个更新一个...
但我不能确定索引是否匹配。 (所以用DataFrame.update是个问题!)
例子:
import pandas as pd
df1 = pd.DataFrame([('path1', 0, 0, 0),
('path2', 0, 0, 0),
('path3', 0, 0, 0),
('path4', 0, 0, 0),],
columns=['path', 'class', 'manual', 'conf'],
index = [1,2,3,4])
df2 = pd.DataFrame([('path1', 1, 0, 0),
('path2', 0, 1, 0),
('path3', 0, 0, 1),
('path5', 1, 1, 0),
('path6', 1, 1, 0),],
columns=['path', 'class', 'manual', 'conf'],
index = [10,11,12,13,14])
期望的结果:
update_annotations(df1, df2)
path class manual conf
1 path1 1 0 0
2 path2 0 1 0
3 path3 0 0 1
4 path4 0 0 0
df1.update(df2) 可能存在风险,因为这些数据帧的索引可能不匹配。这样做最安全和最有效的方法是什么?
快速而肮脏
df1[['path']].merge(df2, 'left')
path class manual conf
0 path1 1.0 0.0 0.0
1 path2 0.0 1.0 0.0
2 path3 0.0 0.0 1.0
3 path4 NaN NaN NaN
不那么快,也不那么脏
df1[['path']].merge(df2, 'left').fillna(0).astype(df1.dtypes)
path class manual conf
0 path1 1 0 0
1 path2 0 1 0
2 path3 0 0 1
3 path4 0 0 0
迂腐
用df1
填写NaN
df1[['path']].merge(df2, 'left').fillna({**df1}).astype(df1.dtypes)
path class manual conf
0 path1 1 0 0
1 path2 0 1 0
2 path3 0 0 1
3 path4 0 0 0
每
df1.set_index('path').assign(**df2.set_index('path')).reset_index()
path class manual conf
0 path1 1.0 0.0 0.0
1 path2 0.0 1.0 0.0
2 path3 0.0 0.0 1.0
3 path4 NaN NaN NaN
保留索引
既然顺序保证是一样的,我们可以直接用set_index
df1[['path']].merge(df2, 'left').fillna({**df1}).astype(df1.dtypes).set_index(df1.index)
path class manual conf
1 path1 1 0 0
2 path2 0 1 0
3 path3 0 0 1
4 path4 0 0 0
基于 piRSquared 的出色回答,
我正在寻找的答案:
df1 = (df1[['path']]
.merge(df2, 'left')
.set_index(df1.index)
.fillna(df1))
我有两个 pandas DataFrame,我想用另一个更新一个... 但我不能确定索引是否匹配。 (所以用DataFrame.update是个问题!)
例子:
import pandas as pd
df1 = pd.DataFrame([('path1', 0, 0, 0),
('path2', 0, 0, 0),
('path3', 0, 0, 0),
('path4', 0, 0, 0),],
columns=['path', 'class', 'manual', 'conf'],
index = [1,2,3,4])
df2 = pd.DataFrame([('path1', 1, 0, 0),
('path2', 0, 1, 0),
('path3', 0, 0, 1),
('path5', 1, 1, 0),
('path6', 1, 1, 0),],
columns=['path', 'class', 'manual', 'conf'],
index = [10,11,12,13,14])
期望的结果:
update_annotations(df1, df2)
path class manual conf
1 path1 1 0 0
2 path2 0 1 0
3 path3 0 0 1
4 path4 0 0 0
df1.update(df2) 可能存在风险,因为这些数据帧的索引可能不匹配。这样做最安全和最有效的方法是什么?
快速而肮脏
df1[['path']].merge(df2, 'left')
path class manual conf
0 path1 1.0 0.0 0.0
1 path2 0.0 1.0 0.0
2 path3 0.0 0.0 1.0
3 path4 NaN NaN NaN
不那么快,也不那么脏
df1[['path']].merge(df2, 'left').fillna(0).astype(df1.dtypes)
path class manual conf
0 path1 1 0 0
1 path2 0 1 0
2 path3 0 0 1
3 path4 0 0 0
迂腐
用df1
NaN
df1[['path']].merge(df2, 'left').fillna({**df1}).astype(df1.dtypes)
path class manual conf
0 path1 1 0 0
1 path2 0 1 0
2 path3 0 0 1
3 path4 0 0 0
每
df1.set_index('path').assign(**df2.set_index('path')).reset_index()
path class manual conf
0 path1 1.0 0.0 0.0
1 path2 0.0 1.0 0.0
2 path3 0.0 0.0 1.0
3 path4 NaN NaN NaN
保留索引
既然顺序保证是一样的,我们可以直接用set_index
df1[['path']].merge(df2, 'left').fillna({**df1}).astype(df1.dtypes).set_index(df1.index)
path class manual conf
1 path1 1 0 0
2 path2 0 1 0
3 path3 0 0 1
4 path4 0 0 0
基于 piRSquared 的出色回答, 我正在寻找的答案:
df1 = (df1[['path']]
.merge(df2, 'left')
.set_index(df1.index)
.fillna(df1))