分别在 RGB 通道上进行 Tensorflow 2D 卷积?
Tensorflow 2D convolution on RGB channels separately?
我想对 RGB 图像应用高斯模糊。
我希望它在每个通道上独立运行。下面的代码输出具有 3 个通道但都具有相同值的模糊图像, 导致灰度图像。
gauss_kernel_2d = gaussian_kernel(2, 0.0, 1.0) # outputs a 5*5 tensor
gauss_kernel = tf.tile(gauss_kernel_2d[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 3]) # 5*5*3*3
image = tf.nn.conv2d(tf.expand_dims(image, 0), gauss_kernel, strides=[1, 1, 1, 1], padding='SAME') # 1*600*800*3
image = tf.squeeze(image) # 600*800*3
# shape of image needs to be [batch, in_height, in_width, in_channels]
# shape of filter needs to be [filter_height, filter_width, in_channels, out_channels]
我正在寻找一个 Tensorflow 函数,它在每个 R/G/B 通道上分别应用卷积并输出 RGB 模糊图像。
您可以使用 tf.nn.separable_conv2d
来做到这一点:
import tensorflow as tf
# ...
gauss_kernel_2d = gaussian_kernel(2, 0.0, 1.0) # outputs a 5*5 tensor
gauss_kernel = tf.tile(gauss_kernel_2d[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 1]) # 5*5*3*1
# Pointwise filter that does nothing
pointwise_filter = tf.eye(3, batch_shape=[1, 1])
image = tf.nn.separable_conv2d(tf.expand_dims(image, 0), gauss_kernel, pointwise_filter,
strides=[1, 1, 1, 1], padding='SAME')
image = tf.squeeze(image) # 600*800*3
我想对 RGB 图像应用高斯模糊。 我希望它在每个通道上独立运行。下面的代码输出具有 3 个通道但都具有相同值的模糊图像, 导致灰度图像。
gauss_kernel_2d = gaussian_kernel(2, 0.0, 1.0) # outputs a 5*5 tensor
gauss_kernel = tf.tile(gauss_kernel_2d[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 3]) # 5*5*3*3
image = tf.nn.conv2d(tf.expand_dims(image, 0), gauss_kernel, strides=[1, 1, 1, 1], padding='SAME') # 1*600*800*3
image = tf.squeeze(image) # 600*800*3
# shape of image needs to be [batch, in_height, in_width, in_channels]
# shape of filter needs to be [filter_height, filter_width, in_channels, out_channels]
我正在寻找一个 Tensorflow 函数,它在每个 R/G/B 通道上分别应用卷积并输出 RGB 模糊图像。
您可以使用 tf.nn.separable_conv2d
来做到这一点:
import tensorflow as tf
# ...
gauss_kernel_2d = gaussian_kernel(2, 0.0, 1.0) # outputs a 5*5 tensor
gauss_kernel = tf.tile(gauss_kernel_2d[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 1]) # 5*5*3*1
# Pointwise filter that does nothing
pointwise_filter = tf.eye(3, batch_shape=[1, 1])
image = tf.nn.separable_conv2d(tf.expand_dims(image, 0), gauss_kernel, pointwise_filter,
strides=[1, 1, 1, 1], padding='SAME')
image = tf.squeeze(image) # 600*800*3