computer/cpu真的懂(二进制)吗?

Do computer/cpu really understand(binary)?

我读过和听过很多人、书籍、网站计算机只理解二进制!但他们没有告诉我如何理解 computer/cpu binary.So 我在想如何 computer/cpu能看懂吗?因为以我的见识和思维有限,想或理解某事必须要有头脑和偏离轨道的生活,但cpu两者都缺。

*Additionally as cpu run by electricity, so my guess is cpu understand nothing,not even binary rather there are some natural rules for electricity or something like that and we human*(或者谁发明了计算机)found it(可能是如果我们在某种组合或一定数量的电路中流动电流,我们得到一排灯之类的,谁知道呢!)and also a way to manipulate the current flow/straight light to make with it, what we need i.e different letters(借助于电的直三光或磁波,我们可以得到字母'A')means computer/cpu dont understanad anything.

这只是我的胡乱猜测。我希望有人可以帮助我清楚地了解 cpu 是否真的理解任何东西(二进制)?如果,那么如何理解。任何详细的答案,文章或书籍都会提前great.Thanks。

"understand"没有。计算机不理解任何东西,它们只是根据固定规则运行以从一种状态移动到另一种状态的机器。

但是所有这些状态都是用二进制编码的。

因此,如果您将计算机的逻辑(架构)或物理(out-of-order 执行等)操作拟人化,您可能会使用 "understand" 这个词来比喻 "process" / "operate in".

将这个比喻发挥到极致,一个玩具架构被称为 Little Man Computer, LMC,以自负/开玩笑的想法命名,即在大大简化的 CPU 中有一个小人实际上在做二进制操作。

The LMC model is based on the concept of a little man shut in a closed mail room (analogous to a computer in this scenario). At one end of the room, there are 100 mailboxes (memory), numbered 0 to 99, that can each contain a 3 digit instruction or data (ranging from 000 to 999).

所以实际上,LMC 是基于 CPU 的 "understands" 十进制,这与普通计算机不同。

除了最简单的程序外,LMC 玩具架构的编程非常糟糕。它不支持 left/right bit-shifts 或按位二进制运算,这是有道理的,因为它基于十进制而不是二进制。 (你当然可以加倍一个数 = 左移,但右移需要其他技巧。)

来自 HashNode 文章"How does a computer machine understand 0s and 1s?"

A computer doesn't actually "understand" anything. It merely provides you with a way of information flow — input to output. The decisions to transform a given set of inputs to an output (computations) are made using boolean expressions (expressed using specific arrangements of logic gates).

At the hardware level we have bunch of elements called transistors (modern computers have billions of them and we are soon heading towards an era where they would become obsolete). These transistors are basically switching devices. Turning ON and OFF based on supply of voltage given to its input terminal. If you translate the presence of voltage at the input of the transistor as 1 and absence of voltage as 0 (you can do it other way too). There!! You have the digital language.