使用结构化流时无法将 json 格式数据写入路径。执行 spark2-submit 时仅创建 _spark_metadata
Unable to write json format data to path when using structured streaming. Only _spark_metadata gets created when doing spark2-submit
我正在将来自 Kafka 结构化流的 json 数据写入文件路径,当我从 shell 执行此操作时,我能够做到。当我将它编译成一个 jar 并执行 spark2-submit 时,只有 _spark_metadata 创建并且没有找到数据
我尝试从 shell 开始,我能够在文件路径中看到 json 文件。我使用 "sbt clean package" 编译程序,然后尝试使用 spark-submit 运行 它不会创建任何数据。
export SPARK_KAFKA_VERSION=0.10
spark2-submit --jars /opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/kafka-clients-0.9.0-kafka-2.0.2.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/spark-sql-kafka-0-10_2.11-2.3.0.cloudera5-20190107.080402-22.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/mongo-spark-connector_2.11-2.3.2.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/bson-3.9.0.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/mongo-java-driver-3.9.0.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/mongodb-driver-core-3.9.0.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/mongodb-driver-3.9.0.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/mongodb-driver-async-3.9.0.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/casbah-commons_2.11-2.8.2.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/casbah-core_2.11-2.8.2.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/casbah-query_2.11-2.8.2.jar --class OSB_kafkaToSpark --master yarn --deploy-mode client /home/streaming_osb_2.11-0.1.0-SNAPSHOT.jar
import com.mongodb.client.MongoCollection
import com.mongodb.spark.config.WriteConfig
import com.mongodb.spark.{MongoConnector}
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.{col, _}
import scala.collection.JavaConverters._
import scala.collection.mutable
import org.apache.spark.sql._
import org.bson.Document
import org.apache.spark.sql.streaming.Trigger
object OSB_kafkaToSpark {
def main(args: Array[String]): Unit = {
val spark = SparkSession.
builder().
appName("OSB_kafkaToSpark").
getOrCreate()
println("SparkSession -> "+spark)
import spark.implicits._
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "bootstrap1.com:9092, bootstrap2.com:9092")
.option("subscribe", "topictest")
.option("failOnDataLoss", "false")
.load()
val dfs = df.selectExpr("CAST(value AS STRING)")
val data = dfs.withColumn("splitted", split($"value", "/"))
.select($"splitted".getItem(4).alias("region"), $"splitted".getItem(5).alias("service"), col("value"))
.withColumn("service_type", regexp_extract($"service", """.*(Inbound|Outbound|Outound).*""", 1))
.withColumn("region_type", concat(
when(col("region").isNotNull, col("region")).otherwise(lit("null")), lit(" "),
when(col("service").isNotNull, col("service_type")).otherwise(lit("null"))))
.withColumn("datetime", regexp_extract($"value", """\d{4}-[01]\d-[0-3]\d [0-2]\d:[0-5]\d:[0-5]\d""", 0))
val extractedDF = data.filter(
col("region").isNotNull &&
col("service").isNotNull &&
col("value").isNotNull &&
col("service_type").isNotNull &&
col("region_type").isNotNull &&
col("datetime").isNotNull)
.filter("region != ''")
.filter("service != ''")
.filter("value != ''")
.filter("service_type != ''")
.filter("region_type != ''")
.filter("datetime != ''")
val pathstring = "/user/spark_streaming".concat(args(0))
val query = extractedDF.writeStream
.format("json")
.option("path", pathstring)
.option("checkpointLocation", "/user/checkpoint")
.outputMode("append")
.trigger(Trigger.ProcessingTime("20 seconds"))
.start()
query.stop()
}
}
我想在 运行ning spark2-submit
时将流数据保存到一个文件夹中
我找到了答案,我需要使用 query.awaitTermination()
我正在将来自 Kafka 结构化流的 json 数据写入文件路径,当我从 shell 执行此操作时,我能够做到。当我将它编译成一个 jar 并执行 spark2-submit 时,只有 _spark_metadata 创建并且没有找到数据
我尝试从 shell 开始,我能够在文件路径中看到 json 文件。我使用 "sbt clean package" 编译程序,然后尝试使用 spark-submit 运行 它不会创建任何数据。
export SPARK_KAFKA_VERSION=0.10
spark2-submit --jars /opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/kafka-clients-0.9.0-kafka-2.0.2.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/spark-sql-kafka-0-10_2.11-2.3.0.cloudera5-20190107.080402-22.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/mongo-spark-connector_2.11-2.3.2.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/bson-3.9.0.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/mongo-java-driver-3.9.0.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/mongodb-driver-core-3.9.0.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/mongodb-driver-3.9.0.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/mongodb-driver-async-3.9.0.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/casbah-commons_2.11-2.8.2.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/casbah-core_2.11-2.8.2.jar,/opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/jars/casbah-query_2.11-2.8.2.jar --class OSB_kafkaToSpark --master yarn --deploy-mode client /home/streaming_osb_2.11-0.1.0-SNAPSHOT.jar
import com.mongodb.client.MongoCollection
import com.mongodb.spark.config.WriteConfig
import com.mongodb.spark.{MongoConnector}
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.{col, _}
import scala.collection.JavaConverters._
import scala.collection.mutable
import org.apache.spark.sql._
import org.bson.Document
import org.apache.spark.sql.streaming.Trigger
object OSB_kafkaToSpark {
def main(args: Array[String]): Unit = {
val spark = SparkSession.
builder().
appName("OSB_kafkaToSpark").
getOrCreate()
println("SparkSession -> "+spark)
import spark.implicits._
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "bootstrap1.com:9092, bootstrap2.com:9092")
.option("subscribe", "topictest")
.option("failOnDataLoss", "false")
.load()
val dfs = df.selectExpr("CAST(value AS STRING)")
val data = dfs.withColumn("splitted", split($"value", "/"))
.select($"splitted".getItem(4).alias("region"), $"splitted".getItem(5).alias("service"), col("value"))
.withColumn("service_type", regexp_extract($"service", """.*(Inbound|Outbound|Outound).*""", 1))
.withColumn("region_type", concat(
when(col("region").isNotNull, col("region")).otherwise(lit("null")), lit(" "),
when(col("service").isNotNull, col("service_type")).otherwise(lit("null"))))
.withColumn("datetime", regexp_extract($"value", """\d{4}-[01]\d-[0-3]\d [0-2]\d:[0-5]\d:[0-5]\d""", 0))
val extractedDF = data.filter(
col("region").isNotNull &&
col("service").isNotNull &&
col("value").isNotNull &&
col("service_type").isNotNull &&
col("region_type").isNotNull &&
col("datetime").isNotNull)
.filter("region != ''")
.filter("service != ''")
.filter("value != ''")
.filter("service_type != ''")
.filter("region_type != ''")
.filter("datetime != ''")
val pathstring = "/user/spark_streaming".concat(args(0))
val query = extractedDF.writeStream
.format("json")
.option("path", pathstring)
.option("checkpointLocation", "/user/checkpoint")
.outputMode("append")
.trigger(Trigger.ProcessingTime("20 seconds"))
.start()
query.stop()
}
}
我想在 运行ning spark2-submit
时将流数据保存到一个文件夹中我找到了答案,我需要使用 query.awaitTermination()