用另一个数据帧中的干净 str 替换凌乱的 str

Replace messy str with clean str from another dataframe

我有 2 组数据框,我想清理 df1['Fruits'] 如果它包含 df2['Fruits'] string

df1
Name    Fruits
--------------
Dina    Pineapple, [Y*]
Maria   PTC*, Apple
Johny   Durian, 1-6
Johny   5,6 Rambutan
Maria   Apple (Red), [Y] *
Dina    [Y] *, Peach88
Dina    Kiwi/Qiwi, PS*

df2
Fruits      tag
-------------
Apple       20
Pineapple   30
Rambutan    40
Durian      50
Apple (Red) 25
Peach88     55
Kiwi/Qiwi   25

我试过了

df1.loc[df1['Fruits'].contains(df2['Fruits']),'Fruits'] = df2['Fruits']

但它显示

'Series' object has no attribute 'contains'

所以我希望得到的是

df1
Name    Fruits
--------------
Dina    Pineapple
Maria   Apple
Johny   Durian
Johny   Rambutan
Maria   Apple (Red)
Dina    Peach88
Dina    Kiwi/Qiwi

使用pandas.Series.str.extract:

reg = '(%s)' % '|'.join(df2['Fruits'])
# Make regex expression using df2['Fruits']
df1['Fruits'] = df1['Fruits'].str.extract(reg)

输出:

    Name     Fruits
0   Dina  Pineapple
1  Maria      Apple
2  Johny     Durian
3  Johny   Rambutan

'(%s)' % '|'.join(df2['Fruits'])的解释:

  • '|'.join(df2['Fruits']):在正则表达式中为 or 操作创建 | 个分隔词。 ReturnsPineapple|Apple|Durian|Rambutan
  • (%s) % ... :这称为 字符串格式化 ,相当于:
    • str.format: '({})'.format('|'.join(df2['Fruits'])),
    • 或更隐含(但更少 pythonic)'(' + '|'.join(df2['Fruits']) + ')'
    • 所有这些 returns (Apple|Pineapple|Rambutan|Durian),一个 捕获组 pd.Series.str.extract 必须了解要提取的内容。