将分层数据加入 R 中的另一个 table

Joining hierarchical data to another table in R

我有 2 个数据框(drugclass),我需要通过最后一级 ATC classification 代码加入它们,并添加 4 个具有相应父级的附加列.

我提出了 2 个解决方案,但第一个非常冗长,第二个是使用 MS Access(我想避免)。 此外,如果我有更多级别,代码将比这个代码更冗长。 这个问题有没有更优雅的解决方案?如何像在 Access 中那样在 R 中执行这种自连接? 我是 R 和 SQL 的初学者,所以不胜感激 :)

示例数据信息

关于那些class化验和级别的简短说明

drug$level5 我们有 Level5 classCodes:
Level5 - A10BA02(二甲双胍)。它是 4 级 - A10BA(双胍类)、3 级 - A10B(抗糖尿病药,ex.insulins)、2 级 - A10(抗糖尿病药)、1 级 - A(消化道和新陈代谢)
的成员 每个级别都严格按照其长度定义(L1 = 1chars., L2 = 3chars., L3 = 4chars., L4 = 5chars., L5 = 7chars.)

| Level   | Code    | Name                            |
|---------|---------|---------------------------------|
| Level5* | A10BA02 | metformin                       |
| Level4  | A10BA   | biguanides                      |
| Level3  | A10B    | antidiabetics, ex. insulins     |
| level2  | A10     | antidiabetics                   |
| Level1  | A       | alimentary tract and metabolism |

示例数据

drug <- data.frame(ID = 1:5,
                   ProductName = c('ABC', 'CDE', 'FGH', 'IJK', 'LMN'),
                   level5 = c('A10BA02', 'C01BA02', 'C03CA01', 'C03CA03', 'C01BA02'), 
                   stringsAsFactors = F)

class <- data.frame(code = c('A', 'A10', 'A10B', 'A10BA', 'A10BA02', 'C', 'C01', 'C01B', 'C01BA',
                            'C01BA02', 'C03', 'C03C', 'C03CA', 'C03CA01', 'C03CA03', 'C07', 'C07A',
                            'C07AA', 'C07AA03'),
                    className = c('Alimentary tract and metabolism',
                                  'Antidiabetics', 'Antidiabetics, except insulins',
                                  'Biguanides', 'Metformin', 'Cardiovascular system',
                                  'Cardiacs', 'Antiarythmics, grp I and III',
                                  'Antiarythmics, grp IA', 'Procainamide', 'Diuretics',
                                  'Diuretics strong', 'Sulfonamides', 'Furosemide',
                                  'Piretanide', 'Betablockers', 'Betablockers',
                                  'Non-selective betablockers', 'Pindolol'), 
                    stringsAsFactors = F)
# print
drug
head(class, 8)

目标

我想在 drug 数据帧上左连接 class,结果 df 如下: 结果 table 应该有额外的列,每列对应从 1 到 5 的每个级别。 目标是创建一个过滤层次结构,您首先按级别 1 过滤产品,然后按级别 2,依此类推……

+----+-------------+-------------------------------------+---------------------+---------------------------------------+-------------------------------+------------------------+
| ID | ProductName | L1                                  | L2                  | L3                                    | L4                            | L5                     |
+----+-------------+-------------------------------------+---------------------+---------------------------------------+-------------------------------+------------------------+
| 1  | ABC         | A - Alimentary tract and metabolism | A10 - Antidiabetics | A10B - Antidiabetics, except insulins | A10BA - Biguanides            | A10BA02 - Metformin    |
+----+-------------+-------------------------------------+---------------------+---------------------------------------+-------------------------------+------------------------+
| 2  | CDE         | C - Cardiovascular system           | C01 - Cardiacs      | C01B - Antiarythmics, grp I and III   | C01BA - Antiarythmics, grp IA | C01BA02 - Procainamide |
+----+-------------+-------------------------------------+---------------------+---------------------------------------+-------------------------------+------------------------+
...

我只使用 R 的脏解决方案 N.1

我想出了一个不漂亮且非常冗长的解决方案,我在每个级别上将 drug$level5 更改为 substr()。然后执行 left_join()unite() 列之后。

library(tidyr)
library(dplyr)

sol1 <- drug %>%
  mutate(level1 = substr(level5, 1, 1),
         level2 = substr(level5, 1, 3),
         level3 = substr(level5, 1, 4),
         level4 = substr(level5, 1, 5)) %>%
  left_join(class, by = c('level1' = 'code')) %>%
  left_join(class, by = c('level2' = 'code')) %>%
  left_join(class, by = c('level3' = 'code')) %>%
  left_join(class, by = c('level4' = 'code')) %>%
  left_join(class, by = c('level5' = 'code')) %>%
  select(ID:level4, 
         level1name = className.x,
         level2name = className.y,
         level3name = className.x.x,
         level4name = className.y.y,
         level5name = className
         ) %>%
  unite(L1, level1, level1name, sep = ' - ') %>%
  unite(L2, level2, level2name, sep = ' - ') %>%
  unite(L3, level3, level3name, sep = ' - ') %>%
  unite(L4, level4, level4name, sep = ' - ') %>%
  unite(L5, level5, level5name, sep = ' - ') 

我的解决方案 N.2 使用 Access 自连接

另一个解决方案是在 MS Access 中使用 self join 重塑 class table 为每个级别创建额外的列,然后简单地在 [= 上加入此 table 17=] R 中的 df

--- sqlReshapedTable
SELECT A.code AS L5,
       A.className AS className,

       L1.code + ' ' + L1.Name AS L1,
       L2.code + ' ' + L2.Name AS L2,
       L3.code + ' ' + L3.Name AS L3,
       L4.code + ' ' + L4.Name AS L4
FROM 
(((class AS A
INNER JOIN class AS L1 ON L1.code = LEFT(A.code, 1))
INNER JOIN class AS L2 ON L2.code = LEFT(A.code, 3))
INNER JOIN class AS L3 ON L3.code = LEFT(A.code, 4))
INNER JOIN class AS L4 ON L4.code = LEFT(A.code, 5);
sol2 <- drug %>% 
  left_join(sqlReshapedTable, by = c('level5' = 'Code'))

非常感谢您的帮助!

也许不是最好的解决方案,但似乎适用于您的情况(我将您的数据框 class 称为 dclass):

library(tidyverse)

drug %>%
  group_by(ID, ProductName) %>%
  summarise(
    code = list(map_chr(c(1, 3:5, 7), ~ gsub(sprintf('(^.{%s}).*', .x), '\1', level5)))
    ) %>%
  unnest %>%
  left_join(dclass, by = 'code') %>% 
  rename_all(tolower) %>%
  mutate(
    key       = paste('L', str_count(code, '\D|\d+'), sep = ''),
    val       = paste(code, classname, sep = ' - '),
    classname = NULL,
    code      = NULL
    ) %>%
  spread(key, val) %>%
  ungroup() %>%
  arrange(L5) %>%
  rename('ID' = id, 'Product Name' = productname) 

输出:

# A tibble: 5 x 7
#     ID `Product Name` L1                   L2           L3                    L4                L5           
#  <int> <chr>          <chr>                <chr>        <chr>                 <chr>             <chr>        
#1     1 ABC            A - Alimentary trac… A10 - Antid… A10B - Antidiabetics… A10BA - Biguanid… A10BA02 - Me…
#2     2 CDE            C - Cardiovascular … C01 - Cardi… C01B - Antiarythmics… C01BA - Antiaryt… C01BA02 - Pr…
#3     5 LMN            C - Cardiovascular … C01 - Cardi… C01B - Antiarythmics… C01BA - Antiaryt… C01BA02 - Pr…
#4     3 FGH            C - Cardiovascular … C03 - Diure… C03C - Diuretics str… C03CA - Sulfonam… C03CA01 - Fu…
#5     4 IJK            C - Cardiovascular … C03 - Diure… C03C - Diuretics str… C03CA - Sulfonam… C03CA03 - Pi…