在不列出所有可能组合的情况下编写饱和转换运算符

Writing a saturate casting operator without listing all possible combinations

我想在不同类型之间创建模板化操作(假设这是列表:int8_t、int16_t、int32_t、int64_t、uint8_t, uint16_t, uint32_t, uint64_t, float, double)。

然后我想允许 saturate_cast<>() 函数获取输入值,检查它是否在输出类型限制内,并在需要时饱和到这些限制。

问题是如果我对两个 int32_t 求和,默认的 C++ 操作在溢出的情况下有未定义的行为,所以我想将操作提升到 int64_t 并使用它键入以执行操作。

暂定的解决方案可能是:

#include <cstdint>
#include <limits>

template<typename T1, typename T2> struct type_which_fits { using type = decltype(T1() + T2()); };
template<> struct type_which_fits<int32_t, int32_t> { using type = int64_t; };

template<typename T1, typename T2>
auto TAdd(T1 lhs, T2 rhs) {
    using type = typename type_which_fits<T1, T2>::type;
    return static_cast<type>(lhs) + static_cast<type>(rhs);
}

template<typename ODT, typename IDT>
ODT saturate_cast(const IDT& v) {
    if (v > std::numeric_limits<ODT>::max()) {
        return std::numeric_limits<ODT>::max();
    }
    if (v < std::numeric_limits<ODT>::min()) {
        return std::numeric_limits<ODT>::min();
    }

    return static_cast<ODT>(v);
}

int main()
{
    auto x = saturate_cast<int8_t>(TAdd(1, 1u));
    return 0;
}

不幸的是,这样我需要进一步指定所有可能的类型组合,我只需要这些规则(按给定顺序验证):

而且在saturate_cast<>()中弹出一堆signed/unsigned警告,当两个类型不一样时"signedness"。

同样,这可以通过专注于所有可能的组合来解决,但不知何故感觉 "wrong"。

当我需要更多类型时,你能提出一个更灵活的解决方案吗?

这是我的方法,执行以下步骤:

  1. 找到上级类型(执行操作时产生的类型)

  2. 根据您的规则将类型提升为下一个类型1-4

  3. 执行加法,同时将两侧都转换为提升的类型。


可以通过以下一般规则找到高级类型:

  • 浮点数 + 任意 -> 浮点数

  • 如果左右有相同的位大小选择较大的(无符号比有符号)

  • else 选择 sizeof() 产量最大的地方

最后 2 个步骤可以通过制作一个辅助结构来保证(并简化),其中 returns 较大的类型 (ab) 使用 std::numerical_limits<T>::digits 它巧妙地完成了我们想要的(也关于有符号/无符号)因为:

  • std::numerical_limits<int>::digits -> 31

  • std::numerical_limits<unsigned>::digits -> 32

这将相应地适用于所有算术类型。

template<typename T, typename U>
struct larger_arithmetic_type {
    static_assert(std::is_arithmetic_v<T>, "T must be arithmetic");
    static_assert(std::is_arithmetic_v<U>, "U must be arithmetic");
    using type = typename std::conditional_t<(std::numeric_limits<T>::digits < std::numeric_limits<U>::digits), U, T>;
};

template<typename T, typename U>
using larger_arithmetic_type_t = typename larger_arithmetic_type<T, U>::type;

有了这个,我们可以启用结构 arithmetic_superior_type(遵循上述一般规则)从整数 and/or 浮点数中找到高级类型:

template<typename T, typename U>
struct arithmetic_superior_type {
    using type = typename 
        std::conditional_t<std::is_floating_point_v<T> && std::is_floating_point_v<U>, larger_arithmetic_type_t<T, U>,
        std::conditional_t<std::is_floating_point_v<T>, T, 
        std::conditional_t<std::is_floating_point_v<U>, U, 
        larger_arithmetic_type_t<T, U>>>>;

};

template<typename T, typename U>
using arithmetic_superior_type_t = typename arithmetic_superior_type<T, U>::type;

因此arithmetic_seperior_type_t<T, U>returns+-*/介于T和[之间的类型=30=] 会产生:

arithmetic_superior_type_t<std::int32_t, float> a;          //-> float
arithmetic_superior_type_t<std::uint32_t, std::int32_t> b;  //-> std::uint32_t
arithmetic_superior_type_t<std::uint32_t, std::uint32_t> c; //-> std::uint32_t
arithmetic_superior_type_t<std::uint64_t, std::uint32_t> d; //-> std::uint64_t
arithmetic_superior_type_t<float, double> e;                //-> double
arithmetic_superior_type_t<std::uint16_t, std::int64_t> f;  //-> std::int64_t

现在就像你说的,光有这个类型是不够的。溢出是可能的,因此 promote_superior_type 是从 TU 接收高级类型提升的第 2 步 - 一个将定义任何加法结果的类型:

template<typename T, typename U>
struct promote_superior_type {
    using superior_type = arithmetic_superior_type_t<T, U>;

    using type = typename
        std::conditional_t<(sizeof(T) == 8u || sizeof(U) == 8u), double, 
        std::conditional_t<std::is_floating_point_v<superior_type>, superior_type, 
        std::conditional_t<(std::numeric_limits<superior_type>::digits < std::numeric_limits<std::int16_t>::digits), std::conditional_t<std::is_signed_v<superior_type>, std::int16_t, std::uint16_t>,
        std::conditional_t<(std::numeric_limits<superior_type>::digits < std::numeric_limits<std::int32_t>::digits), std::conditional_t<std::is_signed_v<superior_type>, std::int32_t, std::uint32_t>,
        std::conditional_t<(std::numeric_limits<superior_type>::digits < std::numeric_limits<std::int64_t>::digits), std::conditional_t<std::is_signed_v<superior_type>, std::int64_t, std::uint64_t>, double>>>>>;
};

template<typename T, typename U>
using promote_superior_type_t = typename promote_superior_type<T, U>::type;

终于可以添加add<T, U>功能了,第3步:

template<typename T, typename U, typename R = promote_superior_type_t<T, U>>
constexpr R add(T a, U b) {
    return static_cast<R>(a) + static_cast<R>(b);
}

这就是所有需要的。 static_asserting 考虑每种可能的类型匹配以获得正确的预期输出:

//8_t + U

auto add_i8_i8 =  add(std::int8_t(10),  std::int8_t(10));   //i8 + i8 -> i16
auto add_i8_u8 =  add(std::int8_t(10),  std::uint8_t(10));  //i8 + u8 -> u16
auto add_u8_u8 =  add(std::uint8_t(10), std::uint8_t(10));  //u8 + u8 -> u16
auto add_i8_i16 = add(std::int8_t(10),  std::int16_t(10));  //i8 + i16 -> i32
auto add_i8_u16 = add(std::int8_t(10),  std::uint16_t(10)); //i8 + u16 -> u32
auto add_u8_u16 = add(std::uint8_t(10), std::uint16_t(10)); //u8 + u16 -> u32
auto add_i8_i32 = add(std::int8_t(10),  std::int32_t(10));  //i8 + i32 -> i64
auto add_i8_u32 = add(std::int8_t(10),  std::uint32_t(10)); //i8 + u32 -> u64
auto add_u8_u32 = add(std::uint8_t(10), std::uint32_t(10)); //u8 + u32 -> u64
auto add_i8_i64 = add(std::int8_t(10),  std::int64_t(10));  //i8 + i64 -> d64
auto add_i8_u64 = add(std::int8_t(10),  std::uint64_t(10)); //i8 + u64 -> d64
auto add_u8_u64 = add(std::uint8_t(10), std::uint64_t(10)); //u8 + u64 -> d64
auto add_i8_f32 = add(std::int8_t(10),  float(10));         //i8 + f32 -> f32
auto add_u8_f32 = add(std::uint8_t(10), float(10));         //u8 + f32 -> f32
auto add_i8_d64 = add(std::int8_t(10),  double(10));        //i8 + d64 -> d64
auto add_u8_d64 = add(std::uint8_t(10), double(10));        //u8 + d64 -> d64

//16_t + U

auto add_i16_i16 = add(std::int16_t(10),  std::int16_t(10));  //i16 + i16 -> i32
auto add_i16_u16 = add(std::int16_t(10),  std::uint16_t(10)); //i16 + u16 -> u32
auto add_u16_u16 = add(std::uint16_t(10), std::uint16_t(10)); //u16 + u16 -> u32
auto add_i16_i32 = add(std::int16_t(10),  std::int32_t(10));  //i16 + i32 -> i64
auto add_i16_u32 = add(std::int16_t(10),  std::uint32_t(10)); //i16 + u32 -> u64
auto add_u16_u32 = add(std::uint16_t(10), std::uint32_t(10)); //u16 + u32 -> u64
auto add_i16_i64 = add(std::int16_t(10),  std::int64_t(10));  //i16 + i64 -> d64
auto add_i16_u64 = add(std::int16_t(10),  std::uint64_t(10)); //i16 + u64 -> d64
auto add_u16_u64 = add(std::uint16_t(10), std::uint64_t(10)); //u16 + u64 -> d64
auto add_i16_f32 = add(std::int16_t(10),  float(10));         //i16 + f32 -> f32
auto add_u16_f32 = add(std::uint16_t(10), float(10));         //u16 + f32 -> f32
auto add_i16_d64 = add(std::int16_t(10),  double(10));        //i16 + d64 -> d64
auto add_u16_d64 = add(std::uint16_t(10), double(10));        //u16 + d64 -> d64

//32_t + U

auto add_i32_i32 = add(std::int32_t(10),  std::int32_t(10));  //i32 + i32 -> i64
auto add_i32_u32 = add(std::int32_t(10),  std::uint32_t(10)); //i32 + u32 -> u64
auto add_u32_u32 = add(std::uint32_t(10), std::uint32_t(10)); //u32 + u32 -> u64
auto add_i32_i64 = add(std::int32_t(10),  std::int64_t(10));  //i32 + i64 -> d64
auto add_i32_u64 = add(std::int32_t(10),  std::uint64_t(10)); //i32 + u64 -> d64
auto add_u32_u64 = add(std::uint32_t(10), std::uint64_t(10)); //u32 + u64 -> d64 
auto add_i32_f32 = add(std::int32_t(10),  float(10));         //i32 + f32 -> f32
auto add_u32_f32 = add(std::uint32_t(10), float(10));         //u32 + f32 -> f32
auto add_i32_d64 = add(std::int32_t(10),  double(10));        //i32 + d64 -> d64
auto add_u32_d64 = add(std::uint32_t(10), double(10));        //u32 + d64 -> d64

//64_t + U

auto add_i64_i64 = add(std::int64_t(10),  std::int64_t(10));  //i64 + i64 -> d64
auto add_i64_u64 = add(std::int64_t(10),  std::uint64_t(10)); //i64 + u64 -> d64
auto add_u64_u64 = add(std::uint64_t(10), std::uint64_t(10)); //u64 + u64 -> d64
auto add_i64_f32 = add(std::int64_t(10),  float(10));         //i64 + f32 -> d64
auto add_u64_f32 = add(std::uint64_t(10), float(10));         //u64 + f32 -> d64
auto add_i64_d64 = add(std::int64_t(10),  double(10));        //i64 + d64 -> d64
auto add_u64_d64 = add(std::uint64_t(10), double(10));        //u64 + d64 -> d64


static_assert(std::is_same_v<decltype(add_i8_i8), std::int16_t>, "");
static_assert(std::is_same_v<decltype(add_i8_u8), std::uint16_t>, "");
static_assert(std::is_same_v<decltype(add_u8_u8), std::uint16_t>, "");
static_assert(std::is_same_v<decltype(add_i8_i16), std::int32_t>, "");
static_assert(std::is_same_v<decltype(add_i8_u16), std::uint32_t>, "");
static_assert(std::is_same_v<decltype(add_u8_u16), std::uint32_t>, "");
static_assert(std::is_same_v<decltype(add_i8_i32), std::int64_t>, "");
static_assert(std::is_same_v<decltype(add_i8_u32), std::uint64_t>, "");
static_assert(std::is_same_v<decltype(add_u8_u32), std::uint64_t>, "");
static_assert(std::is_same_v<decltype(add_i8_i64), double>, "");
static_assert(std::is_same_v<decltype(add_i8_u64), double>, "");
static_assert(std::is_same_v<decltype(add_u8_u64), double>, "");
static_assert(std::is_same_v<decltype(add_i8_f32), float>, "");
static_assert(std::is_same_v<decltype(add_u8_f32), float>, "");
static_assert(std::is_same_v<decltype(add_i8_d64), double>, "");
static_assert(std::is_same_v<decltype(add_u8_d64), double>, "");

static_assert(std::is_same_v<decltype(add_i16_i16), std::int32_t>, "");
static_assert(std::is_same_v<decltype(add_i16_u16), std::uint32_t>, "");
static_assert(std::is_same_v<decltype(add_u16_u16), std::uint32_t>, "");
static_assert(std::is_same_v<decltype(add_i16_i32), std::int64_t>, "");
static_assert(std::is_same_v<decltype(add_i16_u32), std::uint64_t>, "");
static_assert(std::is_same_v<decltype(add_u16_u32), std::uint64_t>, "");
static_assert(std::is_same_v<decltype(add_i16_i64), double>, "");
static_assert(std::is_same_v<decltype(add_i16_u64), double>, "");
static_assert(std::is_same_v<decltype(add_u16_u64), double>, "");
static_assert(std::is_same_v<decltype(add_i16_f32), float>, "");
static_assert(std::is_same_v<decltype(add_u16_f32), float>, "");
static_assert(std::is_same_v<decltype(add_i16_d64), double>, "");
static_assert(std::is_same_v<decltype(add_u16_d64), double>, "");

static_assert(std::is_same_v<decltype(add_i32_i32), std::int64_t>, "");
static_assert(std::is_same_v<decltype(add_i32_u32), std::uint64_t>, "");
static_assert(std::is_same_v<decltype(add_u32_u32), std::uint64_t>, "");
static_assert(std::is_same_v<decltype(add_i32_i64), double>, "");
static_assert(std::is_same_v<decltype(add_i32_u64), double>, "");
static_assert(std::is_same_v<decltype(add_u32_u64), double>, "");
static_assert(std::is_same_v<decltype(add_i32_f32), float>, "");
static_assert(std::is_same_v<decltype(add_u32_f32), float>, "");
static_assert(std::is_same_v<decltype(add_i32_d64), double>, "");
static_assert(std::is_same_v<decltype(add_u32_d64), double>, "");

static_assert(std::is_same_v<decltype(add_i64_i64), double>, "");
static_assert(std::is_same_v<decltype(add_i64_u64), double>, "");
static_assert(std::is_same_v<decltype(add_u64_u64), double>, "");
static_assert(std::is_same_v<decltype(add_i64_f32), double>, "");
static_assert(std::is_same_v<decltype(add_u64_f32), double>, "");
static_assert(std::is_same_v<decltype(add_i64_d64), double>, "");
static_assert(std::is_same_v<decltype(add_u64_d64), double>, "");

有一个不确定因素:

i64 + f32 -> d64
u64 + f32 -> d64
//...
static_assert(std::is_same_v<decltype(add_i64_f32), double>, "");
static_assert(std::is_same_v<decltype(add_u64_f32), double>, "");

根据您的规则,也可以是:

i64 + f32 -> f32 
u64 + f32 -> f32 
//...
static_assert(std::is_same_v<decltype(add_i64_f32), float>, "");
static_assert(std::is_same_v<decltype(add_u64_f32), float>, "");

完整代码:

#include <type_traits>
#include <limits>
#include <cstdint>

template<typename T, typename U>
struct larger_arithmetic_type {
    static_assert(std::is_arithmetic_v<T>, "T must be arithmetic");
    static_assert(std::is_arithmetic_v<U>, "U must be arithmetic");
    using type = typename std::conditional_t<(std::numeric_limits<T>::digits < std::numeric_limits<U>::digits), U, T>;
};

template<typename T, typename U>
using larger_arithmetic_type_t = typename larger_arithmetic_type<T, U>::type;

template<typename T, typename U>
struct arithmetic_superior_type {
    using type = typename 
        std::conditional_t<std::is_floating_point_v<T> && std::is_floating_point_v<U>, larger_arithmetic_type_t<T, U>,
        std::conditional_t<std::is_floating_point_v<T>, T, 
        std::conditional_t<std::is_floating_point_v<U>, U, 
        larger_arithmetic_type_t<T, U>>>>;

};

template<typename T, typename U>
using arithmetic_superior_type_t = typename arithmetic_superior_type<T, U>::type;


template<typename T, typename U>
struct promote_superior_type {
    using superior_type = arithmetic_superior_type_t<T, U>;

    using type = typename
        std::conditional_t<(sizeof(T) == 8u || sizeof(U) == 8u), double, 
        std::conditional_t<std::is_floating_point_v<superior_type>, superior_type, 
        std::conditional_t<(std::numeric_limits<superior_type>::digits < std::numeric_limits<std::int16_t>::digits), std::conditional_t<std::is_signed_v<superior_type>, std::int16_t, std::uint16_t>,
        std::conditional_t<(std::numeric_limits<superior_type>::digits < std::numeric_limits<std::int32_t>::digits), std::conditional_t<std::is_signed_v<superior_type>, std::int32_t, std::uint32_t>,
        std::conditional_t<(std::numeric_limits<superior_type>::digits < std::numeric_limits<std::int64_t>::digits), std::conditional_t<std::is_signed_v<superior_type>, std::int64_t, std::uint64_t>, double>>>>>;
};

template<typename T, typename U>
using promote_superior_type_t = typename promote_superior_type<T, U>::type;

template<typename T, typename U, typename R = promote_superior_type_t<T, U>>
constexpr R add(T a, U b) {
    return static_cast<R>(a) + static_cast<R>(b);
}


int main() {
    arithmetic_superior_type_t<std::int32_t, float> a;          //-> float
    arithmetic_superior_type_t<std::uint32_t, std::int32_t> b;  //-> std::uint32_t
    arithmetic_superior_type_t<std::uint32_t, std::uint32_t> c; //-> std::uint32_t
    arithmetic_superior_type_t<std::uint64_t, std::uint32_t> d; //-> std::uint64_t
    arithmetic_superior_type_t<float, double> e;                //-> double
    arithmetic_superior_type_t<std::uint16_t, std::int64_t> f;  //-> std::int64_t


    //8_t + U

    auto add_i8_i8 =  add(std::int8_t(10),  std::int8_t(10));   //i8 + i8 -> i16
    auto add_i8_u8 =  add(std::int8_t(10),  std::uint8_t(10));  //i8 + u8 -> u16
    auto add_u8_u8 =  add(std::uint8_t(10), std::uint8_t(10));  //u8 + u8 -> u16
    auto add_i8_i16 = add(std::int8_t(10),  std::int16_t(10));  //i8 + i16 -> i32
    auto add_i8_u16 = add(std::int8_t(10),  std::uint16_t(10)); //i8 + u16 -> u32
    auto add_u8_u16 = add(std::uint8_t(10), std::uint16_t(10)); //u8 + u16 -> u32
    auto add_i8_i32 = add(std::int8_t(10),  std::int32_t(10));  //i8 + i32 -> i64
    auto add_i8_u32 = add(std::int8_t(10),  std::uint32_t(10)); //i8 + u32 -> u64
    auto add_u8_u32 = add(std::uint8_t(10), std::uint32_t(10)); //u8 + u32 -> u64
    auto add_i8_i64 = add(std::int8_t(10),  std::int64_t(10));  //i8 + i64 -> d64
    auto add_i8_u64 = add(std::int8_t(10),  std::uint64_t(10)); //i8 + u64 -> d64
    auto add_u8_u64 = add(std::uint8_t(10), std::uint64_t(10)); //u8 + u64 -> d64
    auto add_i8_f32 = add(std::int8_t(10),  float(10));         //i8 + f32 -> f32
    auto add_u8_f32 = add(std::uint8_t(10), float(10));         //u8 + f32 -> f32
    auto add_i8_d64 = add(std::int8_t(10),  double(10));        //i8 + d64 -> d64
    auto add_u8_d64 = add(std::uint8_t(10), double(10));        //u8 + d64 -> d64

    //16_t + U

    auto add_i16_i16 = add(std::int16_t(10),  std::int16_t(10));  //i16 + i16 -> i32
    auto add_i16_u16 = add(std::int16_t(10),  std::uint16_t(10)); //i16 + u16 -> u32
    auto add_u16_u16 = add(std::uint16_t(10), std::uint16_t(10)); //u16 + u16 -> u32
    auto add_i16_i32 = add(std::int16_t(10),  std::int32_t(10));  //i16 + i32 -> i64
    auto add_i16_u32 = add(std::int16_t(10),  std::uint32_t(10)); //i16 + u32 -> u64
    auto add_u16_u32 = add(std::uint16_t(10), std::uint32_t(10)); //u16 + u32 -> u64
    auto add_i16_i64 = add(std::int16_t(10),  std::int64_t(10));  //i16 + i64 -> d64
    auto add_i16_u64 = add(std::int16_t(10),  std::uint64_t(10)); //i16 + u64 -> d64
    auto add_u16_u64 = add(std::uint16_t(10), std::uint64_t(10)); //u16 + u64 -> d64
    auto add_i16_f32 = add(std::int16_t(10),  float(10));         //i16 + f32 -> f32
    auto add_u16_f32 = add(std::uint16_t(10), float(10));         //u16 + f32 -> f32
    auto add_i16_d64 = add(std::int16_t(10),  double(10));        //i16 + d64 -> d64
    auto add_u16_d64 = add(std::uint16_t(10), double(10));        //u16 + d64 -> d64

    //32_t + U

    auto add_i32_i32 = add(std::int32_t(10),  std::int32_t(10));  //i32 + i32 -> i64
    auto add_i32_u32 = add(std::int32_t(10),  std::uint32_t(10)); //i32 + u32 -> u64
    auto add_u32_u32 = add(std::uint32_t(10), std::uint32_t(10)); //u32 + u32 -> u64
    auto add_i32_i64 = add(std::int32_t(10),  std::int64_t(10));  //i32 + i64 -> d64
    auto add_i32_u64 = add(std::int32_t(10),  std::uint64_t(10)); //i32 + u64 -> d64
    auto add_u32_u64 = add(std::uint32_t(10), std::uint64_t(10)); //u32 + u64 -> d64 
    auto add_i32_f32 = add(std::int32_t(10),  float(10));         //i32 + f32 -> f32
    auto add_u32_f32 = add(std::uint32_t(10), float(10));         //u32 + f32 -> f32
    auto add_i32_d64 = add(std::int32_t(10),  double(10));        //i32 + d64 -> d64
    auto add_u32_d64 = add(std::uint32_t(10), double(10));        //u32 + d64 -> d64

    //64_t + U

    auto add_i64_i64 = add(std::int64_t(10),  std::int64_t(10));  //i64 + i64 -> d64
    auto add_i64_u64 = add(std::int64_t(10),  std::uint64_t(10)); //i64 + u64 -> d64
    auto add_u64_u64 = add(std::uint64_t(10), std::uint64_t(10)); //u64 + u64 -> d64
    auto add_i64_f32 = add(std::int64_t(10),  float(10));         //i64 + f32 -> d64
    auto add_u64_f32 = add(std::uint64_t(10), float(10));         //u64 + f32 -> d64
    auto add_i64_d64 = add(std::int64_t(10),  double(10));        //i64 + d64 -> d64
    auto add_u64_d64 = add(std::uint64_t(10), double(10));        //u64 + d64 -> d64


    static_assert(std::is_same_v<decltype(add_i8_i8), std::int16_t>, "");
    static_assert(std::is_same_v<decltype(add_i8_u8), std::uint16_t>, "");
    static_assert(std::is_same_v<decltype(add_u8_u8), std::uint16_t>, "");
    static_assert(std::is_same_v<decltype(add_i8_i16), std::int32_t>, "");
    static_assert(std::is_same_v<decltype(add_i8_u16), std::uint32_t>, "");
    static_assert(std::is_same_v<decltype(add_u8_u16), std::uint32_t>, "");
    static_assert(std::is_same_v<decltype(add_i8_i32), std::int64_t>, "");
    static_assert(std::is_same_v<decltype(add_i8_u32), std::uint64_t>, "");
    static_assert(std::is_same_v<decltype(add_u8_u32), std::uint64_t>, "");
    static_assert(std::is_same_v<decltype(add_i8_i64), double>, "");
    static_assert(std::is_same_v<decltype(add_i8_u64), double>, "");
    static_assert(std::is_same_v<decltype(add_u8_u64), double>, "");
    static_assert(std::is_same_v<decltype(add_i8_f32), float>, "");
    static_assert(std::is_same_v<decltype(add_u8_f32), float>, "");
    static_assert(std::is_same_v<decltype(add_i8_d64), double>, "");
    static_assert(std::is_same_v<decltype(add_u8_d64), double>, "");

    static_assert(std::is_same_v<decltype(add_i16_i16), std::int32_t>, "");
    static_assert(std::is_same_v<decltype(add_i16_u16), std::uint32_t>, "");
    static_assert(std::is_same_v<decltype(add_u16_u16), std::uint32_t>, "");
    static_assert(std::is_same_v<decltype(add_i16_i32), std::int64_t>, "");
    static_assert(std::is_same_v<decltype(add_i16_u32), std::uint64_t>, "");
    static_assert(std::is_same_v<decltype(add_u16_u32), std::uint64_t>, "");
    static_assert(std::is_same_v<decltype(add_i16_i64), double>, "");
    static_assert(std::is_same_v<decltype(add_i16_u64), double>, "");
    static_assert(std::is_same_v<decltype(add_u16_u64), double>, "");
    static_assert(std::is_same_v<decltype(add_i16_f32), float>, "");
    static_assert(std::is_same_v<decltype(add_u16_f32), float>, "");
    static_assert(std::is_same_v<decltype(add_i16_d64), double>, "");
    static_assert(std::is_same_v<decltype(add_u16_d64), double>, "");

    static_assert(std::is_same_v<decltype(add_i32_i32), std::int64_t>, "");
    static_assert(std::is_same_v<decltype(add_i32_u32), std::uint64_t>, "");
    static_assert(std::is_same_v<decltype(add_u32_u32), std::uint64_t>, "");
    static_assert(std::is_same_v<decltype(add_i32_i64), double>, "");
    static_assert(std::is_same_v<decltype(add_i32_u64), double>, "");
    static_assert(std::is_same_v<decltype(add_u32_u64), double>, "");
    static_assert(std::is_same_v<decltype(add_i32_f32), float>, "");
    static_assert(std::is_same_v<decltype(add_u32_f32), float>, "");
    static_assert(std::is_same_v<decltype(add_i32_d64), double>, "");
    static_assert(std::is_same_v<decltype(add_u32_d64), double>, "");

    static_assert(std::is_same_v<decltype(add_i64_i64), double>, "");
    static_assert(std::is_same_v<decltype(add_i64_u64), double>, "");
    static_assert(std::is_same_v<decltype(add_u64_u64), double>, "");
    static_assert(std::is_same_v<decltype(add_i64_f32), double>, "");
    static_assert(std::is_same_v<decltype(add_u64_f32), double>, "");
    static_assert(std::is_same_v<decltype(add_i64_d64), double>, "");
    static_assert(std::is_same_v<decltype(add_u64_d64), double>, "");
}