使用 --preload 在 dask worker 中初始化任务模块全局?

Initializing task module global in dask worker using --preload?

我试图实现与这些问题类似的东西 (, ),其中我有一个(相对)大的模型,我想在将接受需要的任务的工作人员子集上进行预初始化该模型。理想情况下,我什至不希望客户端机器有模型。

在发现这些问题之前,我最初的尝试是在共享模块 worker_task.model 中定义一个 delayed 任务,并在其中分配一个模块全局变量(例如 worker_tasks.model.model)工人的 --preload 脚本用于该任务;但是,由于某些原因这不起作用 - 变量在预加载脚本中设置,但在调用任务时仍然 None

init_model_worker.py:

import logging
from uuid import uuid4

from worker_tasks import model


def dask_setup(worker):
    model.model = f'<mock model {uuid4()}>'

    logger = logging.getLogger('distributed')
    logger.warning(f'model = {model.model}')

worker_tasks/model.py:

import logging
import random
from time import sleep
from uuid import uuid4

import dask

model = None


@dask.delayed
def compute_clinical(inp):        
    if model is None:
        raise RuntimeError('Model not initialized.')

    sleep(random.uniform(3, 17))

    return {
        'result': random.choice((True, False)),
        'confidence': random.uniform(0, 1)
        }

这是我启动它并向调度程序提交内容时的工作日志:

> dask-worker --preload init_model_worker.py tcp://scheduler:8786 --name model-worker
distributed.utils - INFO - Reload module init_model_worker from .py file                                  
distributed.nanny - INFO -         Start Nanny at: 'tcp://172.28.0.4:41743'                         
distributed.diskutils - INFO - Found stale lock file and directory '/worker-epptq9sh', purging      
distributed.utils - INFO - Reload module init_model_worker from .py file                                  
distributed - WARNING - model = <mock model faa41af0-d925-46ef-91c9-086093d37c71>                   
distributed.worker - INFO -       Start worker at:     tcp://172.28.0.4:37973                       
distributed.worker - INFO -          Listening to:     tcp://172.28.0.4:37973                       
distributed.worker - INFO -              nanny at:           172.28.0.4:41743                       
distributed.worker - INFO -              bokeh at:           172.28.0.4:37766                       
distributed.worker - INFO - Waiting to connect to:       tcp://scheduler:8786                       
distributed.worker - INFO - -------------------------------------------------                       
distributed.worker - INFO -               Threads:                          4                       
distributed.worker - INFO -                Memory:                    1.93 GB                       
distributed.worker - INFO -       Local Directory:           /worker-mhozo9ru                       
distributed.worker - INFO - -------------------------------------------------                       
distributed.worker - INFO -         Registered to:       tcp://scheduler:8786                       
distributed.worker - INFO - -------------------------------------------------                       
distributed.core - INFO - Starting established connection                                           
distributed.worker - WARNING -  Compute Failed                                                      
Function:  compute_clinical                                                                         
args:      ('mock')                                                                                 
kwargs:    {}                                                                                       
Exception: RuntimeError('Model not initialized.')                                                   

可以看到重新加载preload脚本后,model<mock model faa41af0-d925-46ef-91c9-086093d37c71>;但是当我尝试从任务中调用它时,我得到 None.

我将尝试根据其他问题的答案实施解决方案,但我有几个与工作器预加载相关的问题:

  1. 为什么我在预加载脚本中分配模型后调用任务时模型 None
  2. 通常建议避免在 worker --preload 脚本中做这样的事情吗?从客户端调用 worker 状态的初始化是否更好? 如果是,为什么

我怀疑模型变量是通过 Python 序列化函数立即绑定到您的函数中的。您可以试试这个:

@dask.delayed
def compute_clinical(inp):       
    from worker_tasks.model import model

    if model is None:
        raise RuntimeError('Model not initialized.')

或者,与其将变量分配给全局模块范围(这在 Python 中可能很难理解),不如尝试将其分配给 worker 本身。

from dask.distributed import get_worker

def dask_setup(worker):
    worker.model = f'<mock model {uuid4()}>'

@dask.delayed
def compute_clinical(inp):       
    if get_worker().model is None:
        raise RuntimeError('Model not initialized.')