如何使用并发将数据帧附加到空数据帧

How to append dataframe to an empty dataframe using concurrent

我想 运行 使用 Python 中的 concurrent 的函数。这是我的功能:

import concurrent.futures
import pandas as pd
import time

def putIndf(file):
    listSel = getline(file)
    datFram = savetoDataFrame(listSel)
    return datFram #datatype : dataframe

def main():
    newData = pd.DataFrame()
    with concurrent.futures.ProcessPoolExecutor(max_workers=30) as executor:
        for i,file in zip(fileList, executor.map(dp.putIndf, fileList)):
            df = newData.append(file, ignore_index=True)
    return df

if __name__ == '__main__':
    main()

我想将数据帧加入一个数据帧newData,但结果只是该函数的最后一个数据帧

基本上你是 re-assigning df 每次迭代并且永远不会增长它。您可能的意思 (ill-advised) 是初始化一个空的 df 并迭代追加:

df = pd.DataFrame()
...
df = df.append(file, ignore_index=True)

尽管如此,首选方法是构建一个数据帧的集合,以便在循环外一次 一起附加,并避免在循环内增长任何复杂的对象,例如数据帧。

def main():
    with concurrent.futures.ProcessPoolExecutor(max_workers=30) as executor:
        # LIST COMPREHENSION
        df_list = [file for i,file in zip(fileList, executor.map(dp.putIndf, fileList))]

        # DICTIONARY COMPREHENSION
        # df_dict = {i:file for i,file in zip(fileList, executor.map(dp.putIndf, fileList))}

    df = pd.concat(df_list, ignore_index=True)
    return df

或者由于您的池进程,将数据帧附加到列表,在循环外仍然连接一次:

def main():
    df_list = []      # df_dict = {}
    with concurrent.futures.ProcessPoolExecutor(max_workers=30) as executor:
        for i,file in zip(fileList, executor.map(dp.putIndf, fileList)):
            df_list.append(file)
            # df_dict[i] = file

    df = pd.concat(df_list, ignore_index=True)
    return df