在 Google Colab 上执行 CUDA 程序时如何 link 库?

How to link the libraries when executing CUDA program on Google Colab?

我正在尝试 运行 CUDA 程序通过在 Google Colab 上使用 cuRAND 库来生成随机数,但我遇到了链接器问题。

我知道,我们可以在使用 nvcc 编译时使用 -lcurand 来解决这个问题,但据我所知,我们无法访问 colab 中的终端

我正在使用它生成 2*N 个随机数。

#include <curand_kernel.h>

int status;
curandGenerator_t gen;
status = curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_MRG32K3A);
status |= curandSetPseudoRandomGeneratorSeed(gen, 4294967296ULL^time(NULL));
status |= curandGenerateUniform(gen, randomnums, (2*N));
status |= curandDestroyGenerator(gen);

错误:

/tmp/tmpxft_000006b3_00000000-10_11f5cb12-9471-4d0d-9dcb-659af6ee1dae.o: In function `main':
tmpxft_000006b3_00000000-5_11f5cb12-9471-4d0d-9dcb-659af6ee1dae.cudafe1.cpp:(.text+0xb0): undefined reference to `curandCreateGenerator'
tmpxft_000006b3_00000000-5_11f5cb12-9471-4d0d-9dcb-659af6ee1dae.cudafe1.cpp:(.text+0xdc): undefined reference to `curandSetPseudoRandomGeneratorSeed'
tmpxft_000006b3_00000000-5_11f5cb12-9471-4d0d-9dcb-659af6ee1dae.cudafe1.cpp:(.text+0xfa): undefined reference to `curandGenerateUniform'
tmpxft_000006b3_00000000-5_11f5cb12-9471-4d0d-9dcb-659af6ee1dae.cudafe1.cpp:(.text+0x109): undefined reference to `curandDestroyGenerator'
collect2: error: ld returned 1 exit status

这是一种可能的方法:

  1. 确保您的 colab 会话有 GPU:

    只需在笔记本设置中的加速器 drop-down 中 select "GPU"(通过“编辑”菜单或 cmd/ctrl-shift-P 处的命令面板)。

  2. 安装the nvcc4jupyter plugin:

    !pip install git+git://github.com/andreinechaev/nvcc4jupyter.git
    
  3. 加载插件:

    %load_ext nvcc_plugin
    
  4. 将所需的代码放入单元格中,传递文件名:

    %%cuda --name my_curand.cu 
    /*
     * This program uses the host CURAND API to generate 100 
     * pseudorandom floats.
     */
    #include <stdio.h>
    #include <stdlib.h>
    #include <cuda.h>
    #include <curand.h>
    
    #define CUDA_CALL(x) do { if((x)!=cudaSuccess) { \
        printf("Error at %s:%d\n",__FILE__,__LINE__);\
        return EXIT_FAILURE;}} while(0)
    #define CURAND_CALL(x) do { if((x)!=CURAND_STATUS_SUCCESS) { \
        printf("Error at %s:%d\n",__FILE__,__LINE__);\
        return EXIT_FAILURE;}} while(0)
    
    int main(int argc, char *argv[])
    {
        size_t n = 100;
        size_t i;
        curandGenerator_t gen;
        float *devData, *hostData;
    
        /* Allocate n floats on host */
        hostData = (float *)calloc(n, sizeof(float));
    
        /* Allocate n floats on device */
        CUDA_CALL(cudaMalloc((void **)&devData, n*sizeof(float)));
    
        /* Create pseudo-random number generator */
        CURAND_CALL(curandCreateGenerator(&gen, 
                    CURAND_RNG_PSEUDO_DEFAULT));
    
        /* Set seed */
        CURAND_CALL(curandSetPseudoRandomGeneratorSeed(gen, 
                    1234ULL));
    
        /* Generate n floats on device */
        CURAND_CALL(curandGenerateUniform(gen, devData, n));
    
        /* Copy device memory to host */
        CUDA_CALL(cudaMemcpy(hostData, devData, n * sizeof(float),
            cudaMemcpyDeviceToHost));
    
        /* Show result */
        for(i = 0; i < n; i++) {
            printf("%1.4f ", hostData[i]);
        }
        printf("\n");
    
        /* Cleanup */
        CURAND_CALL(curandDestroyGenerator(gen));
        CUDA_CALL(cudaFree(devData));
        free(hostData);    
        return EXIT_SUCCESS;
    }
    

    (您的代码是 broken/incomplete,所以我使用 curand docs 中的示例代码)。

    注意单元格输出:

    'File written in /content/src/my_curand.cu'
    
  5. 编译代码:

    !nvcc -o /content/src/my_curand /content/src/my_curand.cu -lcurand
    
  6. 运行代码

    !/content/src/my_curand
    

    注意单元格输出:

    0.1455 0.8202 0.5504 0.2948 0.9147 0.8690 0.3219 0.7829 0.0113 0.2855 0.7816 0.2338 0.6791 0.2824 0.6299 0.1212 0.4333 0.3831 0.5136 0.2987 0.4166 0.0345 0.0494 0.0467 0.6166 0.6480 0.8685 0.4012 0.0631 0.4972 0.6809 0.9350 0.0704 0.0458 0.1324 0.3785 0.6457 0.9930 0.9952 0.7677 0.3217 0.8210 0.2765 0.2691 0.4579 0.1969 0.9555 0.8739 0.7996 0.3810 0.6662 0.3153 0.9428 0.5006 0.3369 0.1490 0.8637 0.6191 0.6820 0.4573 0.9261 0.5650 0.7117 0.8252 0.8755 0.2216 0.2958 0.4046 0.3896 0.7335 0.7301 0.8154 0.0913 0.0866 0.6974 0.1811 0.5834 0.9255 0.9029 0.0413 0.9522 0.5507 0.7237 0.3976 0.7519 0.4398 0.4638 0.6094 0.7358 0.3272 0.6961 0.4893 0.9698 0.0456 0.2025 0.9491 0.1516 0.0424 0.6149 0.5638