使用沿最后两个轴的索引数组索引 4D 数组 - NumPy / Python
Indexing 4D array with an indexing array along last two axes - NumPy / Python
我想创建一批具有多个通道的零图像,并且每个图像有一个给定像素,值为 1。
如果图像仅按通道数编制索引,则以下代码可以很好地完成工作:
num_channels = 3
im_size = 2
images = np.zeros((num_channels, im_size, im_size))
# random locations for the ones
pixels = np.random.randint(low=0, high=im_size,
size=(num_channels, 2))
images[np.arange(num_channels), pixels[:, 0], pixels[:, 1]] = 1
但是,如果我们也想考虑批处理,类似的代码会失败:
batch_size = 4
num_channels = 3
im_size = 2
images = np.zeros((batch_size, num_channels, im_size, im_size))
# random locations for the ones
pixels = np.random.randint(low=0, high=im_size,
size=(batch_size, num_channels, 2))
images[np.arange(batch_size), np.arange(num_channels), pixels[:, :, 0], pixels[:, :, 1]] = 1
给出了错误
IndexError: shape mismatch: indexing arrays could not be broadcast together with shapes (4,) (3,) (4,3) (4,3)
以下代码将使用低效循环完成工作:
batch_size = 4
num_channels = 3
im_size = 2
images = np.zeros((batch_size, num_channels, im_size, im_size))
# random locations for the ones
pixels = np.random.randint(low=0, high=im_size,
size=(batch_size, num_channels, 2))
for k in range(batch_size):
images[k, np.arange(num_channels), pixels[k, :, 0], pixels[k, :, 1]] = 1
您将如何获得矢量化解决方案?
使用 advanced-indexing
的简单矢量化将是 -
I,J = np.arange(batch_size)[:,None],np.arange(num_channels)
images[I, J, pixels[...,0], pixels[...,1]] = 1
获取这些 I
、J
索引器的另一种更简单的方法是使用 np.ogrid
-
I,J = np.ogrid[:batch_size,:num_channels]
我想创建一批具有多个通道的零图像,并且每个图像有一个给定像素,值为 1。
如果图像仅按通道数编制索引,则以下代码可以很好地完成工作:
num_channels = 3
im_size = 2
images = np.zeros((num_channels, im_size, im_size))
# random locations for the ones
pixels = np.random.randint(low=0, high=im_size,
size=(num_channels, 2))
images[np.arange(num_channels), pixels[:, 0], pixels[:, 1]] = 1
但是,如果我们也想考虑批处理,类似的代码会失败:
batch_size = 4
num_channels = 3
im_size = 2
images = np.zeros((batch_size, num_channels, im_size, im_size))
# random locations for the ones
pixels = np.random.randint(low=0, high=im_size,
size=(batch_size, num_channels, 2))
images[np.arange(batch_size), np.arange(num_channels), pixels[:, :, 0], pixels[:, :, 1]] = 1
给出了错误
IndexError: shape mismatch: indexing arrays could not be broadcast together with shapes (4,) (3,) (4,3) (4,3)
以下代码将使用低效循环完成工作:
batch_size = 4
num_channels = 3
im_size = 2
images = np.zeros((batch_size, num_channels, im_size, im_size))
# random locations for the ones
pixels = np.random.randint(low=0, high=im_size,
size=(batch_size, num_channels, 2))
for k in range(batch_size):
images[k, np.arange(num_channels), pixels[k, :, 0], pixels[k, :, 1]] = 1
您将如何获得矢量化解决方案?
使用 advanced-indexing
的简单矢量化将是 -
I,J = np.arange(batch_size)[:,None],np.arange(num_channels)
images[I, J, pixels[...,0], pixels[...,1]] = 1
获取这些 I
、J
索引器的另一种更简单的方法是使用 np.ogrid
-
I,J = np.ogrid[:batch_size,:num_channels]