有效地迭代字符串列表以获得成对的 WMD 距离矩阵

Iterate efficiently over a list of strings to get matrix of pairwise WMD distances

我正在尝试从列表字符串(报纸文章)生成成对距离矩阵。

WMD 距离未在 scipy.spatial.distance.pdist 中实现,因此我将此实现挂钩:https://github.com/src-d/wmd-relax 到 SpaCy。但是,我不知道如何遍历我的列表来生成距离矩阵。

根据文档:


import spacy
import wmd
import numpy as np


nlp = spacy.load('en_core_web_md')
nlp.add_pipe(wmd.WMD.SpacySimilarityHook(nlp), last=True)

# given articles is a list of strings
docs = [nlp(article) for article in articles]

# matrix is just a list of lists in terms of Python objects
m = []
for doc1 in docs:
    row = []
    for doc2 in docs:
        # if distance is similarity function
        row.append(doc1.similarity(doc2))
    m.append(row)

result = np.matrix(m)

Numpy matrix doc