如何在此代码段中使用 pickle?

How do I use pickle in this code snippet?

我有一个简单的代码片段来训练模型,但是当我使用 pickle 保存模型以备将来使用时,它给了我一个 错误信息:

cannot pickle thread.LOCK objects

我使用了不止一种格式的泡菜,但它给了我同样的错误。

import pickle

model = keras.Sequential([
    keras.layers.Dense(SHAPE, input_shape=(SHAPE,)),
    keras.layers.Dense(300, activation='sigmoid'),
    keras.layers.Dense(10, activation='softmax')
])


#******************    COMPILING THE MODE        *****************
LEARNING_RATE = 0.0005
model.compile(optimizer=keras.optimizers.Adam(lr=LEARNING_RATE),
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy']              
             )

# ***********      TRAINING THE MODEL   **********
EPOCHS = 20
BATCH_SIZE=50

history_original_data = model.fit(X_original_train_images, y_original_train_labels, epochs=EPOCHS, batch_size=BATCH_SIZE) 
hist_original=history_original_data.history


### PICKLE TO SAVE THE MODEL TO BE USED WITHOU PRO-TRAINING IT
pickname ="SequentialNeuroNetwork.pkl"
PickleSeq = open(pickname, 'wb')
pickle.dump(model, PickleSeq)
PickleSeq.close()

我原以为上面的代码片段 运行 会很顺利,但它让我付出了代价。

您使用的是哪个版本的keras?我几乎可以肯定旧版本不支持 pickle。

或者,建议使用 model.save() 将您的模型保存在 keras 中。正如keras页面常见问题解答中所述:

You can use model.save(filepath) to save a Keras model into a single HDF5 file which will contain:

  • the architecture of the model, allowing to re-create the model
  • the weights of the model
  • the training configuration (loss, optimizer)
  • the state of the optimizer, allowing to resume training exactly where you left off.

You can then use keras.models.load_model(filepath) to reinstantiate your model. load_model will also take care of compiling the model using the saved training configuration (unless the model was never compiled in the first place).

来源:https://keras.io/getting-started/faq/#how-can-i-save-a-keras-model