是否有从多个数据集中获取多列计数的函数?

Is there a function to get counts in multiple columns from multiple datasets?

我有 2 列邮政编码。一个代表我的订单,另一个代表这些订单报告的问题,两者在不同的数据集中。

我的订单数据集中有一个邮政编码列:

B0E1H0
B3M0G4
B3K6R6
B3L1J7
B0E1H0
B3K3M2
B3K2Z8
B0E1H0
B3K6R6
B0E1H0

我报告的问题数据集中有一个邮政编码列:

B3K6R6
B3K6R6
B0E1H0
B0E1H0
B3L1J7

我想以一个数据框作为结尾,其中包含唯一邮政编码的列表、数量、发行数量以及每个邮政编码的发行比例,如下所示:

Postal code, Volume, Issues, Issue %
BOE1H0, 4, 2, 50%
B3K2Z8, 1, 0, 0%
B3K3M2, 1, 0, 0%
B3K6R6, 2, 2, 100%
B3L1J7, 1, 1, 100%
B3M0G4, 1, 0, 0% 

我可以通过执行以下操作获得第 1 2 行:

    orders <- read.csv("G:\My Drive\R\R Data\Stuff\Text File\Orders.csv", header = TRUE)
pcvec <- as.vector(orders["Postal.Code"])
unipc <- unique(pcvec,incomparables = F)
unipcvec <- as.vector(unipc)
pccount <- count(orders, "Postal.Code")
nrow(unipc)
x <- data.frame(pccount)
x <- rename(x, c("freq" = "Volume"))
x

    Postal.Code Volume
1        B0C1H0      1
2        B0E1B0      3
3        B0E1H0      7
4        B0E1L0      1
5        B0E1N0      1
6        B0E1P0      1
7        B0E1V0      1
8        B0E1W0      1
9        B0E2K0      1

我的卷数据集中有大约 5000 行,问题数据集中有大约 300 行,是否可以轻松做到这一点?

抱歉,如果我没有正确的术语,请告诉我是否可以澄清这一点。

dplyr 的一种方式假设两个数据帧被称为 df1df2 并且列在两个数据集中都被称为 V1。我们 count 两个数据框中每个邮政编码的频率并将它们加入 V1 列,用 0 替换不匹配的列并通过将 Issues 除以 [= 来计算问题百分比20=].

library(dplyr)

df1 %>%
  count(V1) %>%
  left_join(df2 %>% count(V1), by = "V1") %>%
  rename_all(~c("Postal_Code", "Volume", "Issues")) %>%
  tidyr::replace_na(list(Issues = 0)) %>%
  mutate(Issue_perc = Issues/Volume * 100)

# A tibble: 6 x 4
#  Postal_Code Volume Issues Issue_perc
#  <chr>        <int>  <dbl>      <dbl>
#1 B0E1H0           4      2         50
#2 B3K2Z8           1      0          0
#3 B3K3M2           1      0          0
#4 B3K6R6           2      2        100
#5 B3L1J7           1      1        100
#6 B3M0G4           1      0          0

使用dplyr很容易通过链接执行这样的操作。否则,我们也可以仅使用基数 R

进行相同的操作
temp_df <- merge(stack(table(df1)), stack(table(df2)), by = "ind", all.x = TRUE)
temp_df$values.y[is.na(temp_df$values.y)] <- 0
temp_df$Issue_perc <- temp_df$values.y/temp_df$values.x * 100

数据

df1 <- structure(list(V1 = c("B0E1H0", "B3M0G4", "B3K6R6", "B3L1J7", 
"B0E1H0", "B3K3M2", "B3K2Z8", "B0E1H0", "B3K6R6", "B0E1H0")), row.names 
= c(NA, -10L), class = "data.frame")

df2 <- structure(list(V1 = c("B3K6R6", "B3K6R6", "B0E1H0", "B0E1H0", 
"B3L1J7")), row.names = c(NA, -5L), class = "data.frame")

这是 data.table 的一个选项。将 'data.frame' 转换为 'data.table' (setDT(df1), setDT(df2)),通过 'V1' 得到行数 (.N),做一个连接 on的'V1',然后将不常见的列除以得到百分比,同时将NA赋值给0

library(data.table)
setnames(setDT(df1)[, .N, V1][setDT(df2)[, .N, V1], 
    Issues := i.N, on = .(V1)][, Issue_perc:= Issues/N * 100][is.na(Issues), 
     c('Issues', 'Issue_perc') := 0], 'N', 'Volume')[]
#       V1 Volume Issues Issue_perc
#1: B0E1H0      4      2         50
#2: B3M0G4      1      0          0
#3: B3K6R6      2      2        100
#4: B3L1J7      1      1        100
#5: B3K3M2      1      0          0
#6: B3K2Z8      1      0          0

dcast

的另一个选项
dcast(rbindlist(list(df1, df2), idcol = 'grp')[, .N, .(grp, V1)],
   V1 ~ c("Volume", "Issues")[grp], value.var = "N", fill = 0)[, 
      Issue_perc := Issues/Volume * 100][]
#         V1 Issues Volume Issue_perc
#1: B0E1H0      2      4         50
#2: B3K2Z8      0      1          0
#3: B3K3M2      0      1          0
#4: B3K6R6      2      2        100
#5: B3L1J7      1      1        100
#6: B3M0G4      0      1          0

或者使用 base R,我们在两个数据集的 'V1' 列中创建 union 个元素,然后转换为 factor 并指定 levels作为 'lvls',获取 table,执行 mergetransform 以创建 'Issue_perc' 列

lvls <- union(df1$V1, df2$V1)
transform(merge(as.data.frame(table(factor(df1$V1, levels = lvls))), 
   as.data.frame(table(factor(df2$V1, levels = lvls))), by = 'Var1'), 
    Issue_perc = Freq.y/Freq.x * 100)
#     Var1 Freq.x Freq.y Issue_perc
#1 B0E1H0      4      2         50
#2 B3K2Z8      1      0          0
#3 B3K3M2      1      0          0
#4 B3K6R6      2      2        100
#5 B3L1J7      1      1        100
#6 B3M0G4      1      0          0

或者一个带有tidyverse的选项,我们通过list把数据集变成listmap,把'V1'转换成factor 与之前指定的 levelsreduce list 通过执行 inner_join 到单个 data.frame,然后使用 [=39 创建百分比列=]

library(tidyverse)
list(df1, df2) %>% 
    map(~ .x %>% 
             mutate(V1 = factor(V1, levels = lvls)) %>% 
             count(V1,  .drop = FALSE)) %>%
             reduce(inner_join, by = 'V1') %>% 
             mutate(Issue_perc = n.y/n.x * 100) %>% 
             rename_at(vars(matches('n\.')), ~ c("Volume", "Issues"))
# A tibble: 6 x 4
#  V1     Volume Issues Issue_perc
#  <fct>   <int>  <int>      <dbl>
#1 B0E1H0      4      2         50
#2 B3M0G4      1      0          0
#3 B3K6R6      2      2        100
#4 B3L1J7      1      1        100
#5 B3K3M2      1      0          0
#6 B3K2Z8      1      0          0

或者稍微不同的选项是将数据集放在 list 中,然后将它们与分组列绑定,count 以获得频率,spread 到 'wide' 格式,然后创建新的 'perc' 列

list(df1, df2) %>%
    bind_rows(.id = 'grp') %>%
    count(grp, V1) %>% 
    mutate(grp = c("Volume", "Issues")[as.integer(grp)]) %>% 
    spread(grp, n, fill = 0) %>% 
    mutate(Issue_perc = Issues/Volume * 100)
# A tibble: 6 x 4
#  V1     Issues Volume Issue_perc
#  <chr>   <dbl>  <dbl>      <dbl>
#1 B0E1H0      2      4         50
#2 B3K2Z8      0      1          0
#3 B3K3M2      0      1          0
#4 B3K6R6      2      2        100
#5 B3L1J7      1      1        100
#6 B3M0G4      0      1          0

数据

df1 <- structure(list(V1 = c("B0E1H0", "B3M0G4", "B3K6R6", "B3L1J7", 
"B0E1H0", "B3K3M2", "B3K2Z8", "B0E1H0", "B3K6R6", "B0E1H0")), row.names 
= c(NA, -10L), class = "data.frame")

df2 <- structure(list(V1 = c("B3K6R6", "B3K6R6", "B0E1H0", "B0E1H0", 
"B3L1J7")), row.names = c(NA, -5L), class = "data.frame")