Numpy:向量化 np.argwhere

Numpy: Vectorize np.argwhere

我在 numpy 中有以下数据结构:

import numpy as np

a = np.random.rand(267, 173) # dense img matrix
b = np.random.rand(199) # array of probability samples

我的目标是获取 b 中的每个条目 i,找到 a 中所有值的 x,y coordinates/index 位置 <= i,然后随机 select 该子集中的值之一:

from random import randint

for i in b:
  l = np.argwhere(a <= i) # list of img coordinates where pixel <= i
  sample = l[randint(0, len(l)-1)] # random selection from `l`

This "works",但我想向量化采样操作(即将 for 循环替换为 apply_along_axis 或类似循环)。有谁知道如何做到这一点?任何建议将不胜感激!

您不能完全矢量化 np.argmax because you have a random subset size every time. What you can do though, is speed up the computation pretty dramatically with sorting. Sorting the image once will create a single allocation, while masking the image at every step will create a temporary array for the mask and for the extracted elements. With a sorted image, you can just apply np.searchsorted 以获得尺寸:

a_sorted = np.sort(a.ravel())
indices = np.searchsorted(a_sorted, b, side='right')

你仍然需要一个循环来做采样,但你可以做类似的事情

samples = np.array([a_sorted[np.random.randint(i)] for i in indices])

使用此系统获取 x-y 坐标而不是样本值有点复杂。你可以使用np.unravel_index to get the indices, but first you must convert form the reference frame of a_sorted to a.ravel(). If you sort using np.argsort instead of np.sort,你可以得到原始数组中的索引。幸运的是,np.searchsorted 通过 sorter 参数支持这种情况:

a_ind = np.argsort(a, axis=None)
indices = np.searchsorted(a.ravel(), b, side='right', sorter=a_ind)
r, c = np.unravel_index(a_ind[[np.random.randint(i) for i in indices]], a.shape)

rcb大小相同,对应每个选择b中的行列索引a ].索引转换取决于数组中的步幅,因此我们假设您使用的是 C 顺序,因为默认情况下 90% 的数组都会这样做。

复杂度

假设 b 的大小为 Ma 的大小为 N

您当前的算法针对 b 的每个元素对 a 的每个元素进行线性搜索。在每次迭代中,它为匹配元素分配一个掩码(平均 N/2),然后分配一个相同大小的缓冲区来保存掩码选择。这意味着时间复杂度在O(M * N)数量级,space复杂度相同。

我的算法先排序a,也就是O(N log N)。然后搜索 M 个插入点,即 O(M log N)。最后,它选择 M 个样本。它分配的 space 是图像的一个排序副本和两个大小为 M 的数组。因此,它的时间复杂度为 O((M + N) log N),space 中的时间复杂度为 O(M + N)

这是一种替代方法,argsorting b,然后相应地使用 np.digitizethis post:

装箱 a
import numpy as np
from scipy import sparse
from timeit import timeit
import math

def h_digitize(a,bs,right=False):
    mx,mn = a.max(),a.min()
    asz = mx-mn
    bsz = bs[-1]-bs[0]
    nbins=int(bs.size*math.sqrt(bs.size)*asz/bsz)
    bbs = np.concatenate([[0],((nbins-1)*(bs-mn)/asz).astype(int).clip(0,nbins),[nbins]])
    bins = np.repeat(np.arange(bs.size+1), np.diff(bbs))
    bbs = bbs[:bbs.searchsorted(nbins)]
    bins[bbs] = -1
    aidx = bins[((nbins-1)*(a-mn)/asz).astype(int)]
    ambig = aidx == -1
    aa = a[ambig]
    if aa.size:
        aidx[ambig] = np.digitize(aa,bs,right)
    return aidx

def f_pp():
    bo = b.argsort()
    bs = b[bo]
    aidx = h_digitize(a,bs,right=True).ravel()
    aux = sparse.csr_matrix((aidx,aidx,np.arange(aidx.size+1)),
                            (aidx.size,b.size+1)).tocsc()
    ridx = np.empty(b.size,int)
    ridx[bo] = aux.indices[np.fromiter(map(np.random.randint,aux.indptr[1:-1].tolist()),int,b.size)]
    return np.unravel_index(ridx,a.shape)

def f_mp():
    a_ind = np.argsort(a, axis=None)
    indices = np.searchsorted(a.ravel(), b, sorter=a_ind, side='right')
    return np.unravel_index(a_ind[[np.random.randint(i) for i in indices]], a.shape)


a = np.random.rand(267, 173) # dense img matrix
b = np.random.rand(199) # array of probability samples

# round to test wether equality is handled correctly
a = np.round(a,3)
b = np.round(b,3)

print('pp',timeit(f_pp, number=1000),'ms')
print('mp',timeit(f_mp, number=1000),'ms')

# sanity checks

S = np.max([a[f_pp()] for _ in range(1000)],axis=0)
T = np.max([a[f_mp()] for _ in range(1000)],axis=0)
print(f"inequality satisfied: pp {(S<=b).all()} mp {(T<=b).all()}")
print(f"largest smalles distance to boundary: pp {(b-S).max()} mp {(b-T).max()}")
print(f"equality done right: pp {not (b-S).all()} mp {not (b-T).all()}")

使用经过调整的 digitize 我会快一点,但这可能会随着问题的大小而变化。此外,@MadPhysicist 的解决方案也不那么复杂。标准 digitize 我们差不多。

pp 2.620121960993856 ms                                                                                                                                                                                                                                                        
mp 3.301037881989032 ms                                                                                                                                                                                                                                                        
inequality satisfied: pp True mp True
largest smalles distance to boundary: pp 0.0040000000000000036 mp 0.006000000000000005
equality done right: pp True mp True

@MadPhysicist 的算法略有改进,使其更加矢量化:

%%timeit
a_ind = np.argsort(a, axis=None)
indices = np.searchsorted(a.ravel(), b, sorter=a_ind)
r, c = np.unravel_index(a_ind[[np.random.randint(i) for i in indices]], a.shape)
100 loops, best of 3: 6.32 ms per loop

%%timeit
a_ind = np.argsort(a, axis=None)
indices = np.searchsorted(a.ravel(), b, sorter=a_ind)
r, c = np.unravel_index(a_ind[(np.random.rand(indices.size) * indices).astype(int)], a.shape)
100 loops, best of 3: 4.16 ms per loop

@PaulPanzer 的解决方案仍然占据主导地位,尽管我不确定它在缓存什么:

%timeit f_pp()
The slowest run took 14.79 times longer than the fastest. This could mean that an intermediate result is being cached.
100 loops, best of 3: 1.88 ms per loop