通过比较 4 个不同的行来提取数据
Extract Data by comparing 4 different rows
Table数据如下,需要提取满足以下条件的记录
此处值 = 值 2-值 1
Value of two days back data should be > 2
Value of last day data is < 0
Value of next day data is < 4 and >0
Value of after next day data > 4
所有日期都是工作日,如果有一个日期是星期五,需要与第二天比较,即..星期一。并且仅与其他日期进行比较
必须从下面输出。
1 4-1-2018 15 18
2 3-1-2018 3 0
-----------------------------------
code Date Value1 Value2
---------------------------------------
1 1-1-2018 13 14
1 2-1-2018 14 18
1 3-1-2018 15 11
1 4-1-2018 15 18
1 5-1-2018 15 18
1 6-1-2018 11 18
1 7-1-2018 15 18
2 1-1-2019 1 3
2 2-1-2018 2 5
2 3-1-2018 3 0
2 4-1-2018 3 7
2 5-1-2018 3 4
2 6-1-2018 3 9
2 7-1-2018 3 7
我在比较多行时非常困惑,非常感谢任何帮助。
从 v2012 开始,我们有 support for LAG()
and LEAD()
。试试这个:
SET DATEFORMAT dmy;
DECLARE @tbl TABLE(code INT,[Date] DATE,Value1 INT,Value2 INT);
INSERT INTO @tbl VALUES
(1,'1-1-2018',13,14)
,(1,'2-1-2018',14,18)
,(1,'3-1-2018',15,11)
,(1,'4-1-2018',15,18)
,(1,'5-1-2018',15,18)
,(1,'6-1-2018',11,18)
,(1,'7-1-2018',15,18)
,(2,'1-1-2019', 1, 3)
,(2,'2-1-2018', 2, 5)
,(2,'3-1-2018', 3, 0)
,(2,'4-1-2018', 3, 7)
,(2,'5-1-2018', 3, 4)
,(2,'6-1-2018', 3, 9)
,(2,'7-1-2018', 3, 7);
WITH cte AS
(
SELECT *
,LAG(Value2-Value1,2) OVER(PARTITION BY code ORDER BY [Date]) TwoDaysBack
,LAG(Value2-Value1,1) OVER(PARTITION BY code ORDER BY [Date]) Yesterday
,LEAD(Value2-Value1,1) OVER(PARTITION BY code ORDER BY [Date]) tomorrow
,LEAD(Value2-Value1,2) OVER(PARTITION BY code ORDER BY [Date]) TwoDaysAhead
FROM @tbl
)
SELECT *
FROM cte;
我不太明白,您想如何在过滤器中使用这些值来获得预期的输出。如果您需要这方面的帮助,请回来...
结果
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| code | Date | Value1 | Value2 | TwoDaysBack | Yesterday | tomorrow | TwoDaysAhead |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 1 | 2018-01-01 | 13 | 14 | NULL | NULL | 4 | -4 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 1 | 2018-01-02 | 14 | 18 | NULL | 1 | -4 | 3 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 1 | 2018-01-03 | 15 | 11 | 1 | 4 | 3 | 3 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 1 | 2018-01-04 | 15 | 18 | 4 | -4 | 3 | 7 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 1 | 2018-01-05 | 15 | 18 | -4 | 3 | 7 | 3 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 1 | 2018-01-06 | 11 | 18 | 3 | 3 | 3 | NULL |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 1 | 2018-01-07 | 15 | 18 | 3 | 7 | NULL | NULL |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 2 | 2018-01-02 | 2 | 5 | NULL | NULL | -3 | 4 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 2 | 2018-01-03 | 3 | 0 | NULL | 3 | 4 | 1 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 2 | 2018-01-04 | 3 | 7 | 3 | -3 | 1 | 6 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 2 | 2018-01-05 | 3 | 4 | -3 | 4 | 6 | 4 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 2 | 2018-01-06 | 3 | 9 | 4 | 1 | 4 | 2 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 2 | 2018-01-07 | 3 | 7 | 1 | 6 | 2 | NULL |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 2 | 2019-01-01 | 1 | 3 | 6 | 4 | NULL | NULL |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
简而言之:
LAG() 和 LEAD() 都采用所需值的参数,第二个参数是我们要跳过的行数,第三个参数是您可能指定的默认值以避免结果中出现 NULL,当范围内没有行时。
OVER() 子句将告诉任何 窗口函数 我们是否想将集合视为分组和排序顺序(否则系统将不知道什么是领先或落后。
with cte as (
select *,
lag(value2 - value1, 2) over (partition by code order by date) prev2,
lag(value2 - value1, 1) over (partition by code order by date) prev1,
lead(value2 - value1, 1) over (partition by code order by date) next1,
lead(value2 - value1, 2) over (partition by code order by date) next2
from tablename
)
select code, date, value1, value2
from cte
where prev2 > 2 and prev1 < 0 and next1 > 0 and next1 < 4 and next2 > 4
参见demo。
结果:
code | date | value1 | value2
---: | :------------------ | -----: | -----:
1 | 01/04/2018 00:00:00 | 15 | 18
2 | 01/04/2018 00:00:00 | 3 | 7
您对 code = 2
的预期结果与我的结果存在差异,因此请检查其有效性。
Table数据如下,需要提取满足以下条件的记录
此处值 = 值 2-值 1
Value of two days back data should be > 2
Value of last day data is < 0
Value of next day data is < 4 and >0
Value of after next day data > 4
所有日期都是工作日,如果有一个日期是星期五,需要与第二天比较,即..星期一。并且仅与其他日期进行比较
必须从下面输出。
1 4-1-2018 15 18
2 3-1-2018 3 0
-----------------------------------
code Date Value1 Value2
---------------------------------------
1 1-1-2018 13 14
1 2-1-2018 14 18
1 3-1-2018 15 11
1 4-1-2018 15 18
1 5-1-2018 15 18
1 6-1-2018 11 18
1 7-1-2018 15 18
2 1-1-2019 1 3
2 2-1-2018 2 5
2 3-1-2018 3 0
2 4-1-2018 3 7
2 5-1-2018 3 4
2 6-1-2018 3 9
2 7-1-2018 3 7
我在比较多行时非常困惑,非常感谢任何帮助。
从 v2012 开始,我们有 support for LAG()
and LEAD()
。试试这个:
SET DATEFORMAT dmy;
DECLARE @tbl TABLE(code INT,[Date] DATE,Value1 INT,Value2 INT);
INSERT INTO @tbl VALUES
(1,'1-1-2018',13,14)
,(1,'2-1-2018',14,18)
,(1,'3-1-2018',15,11)
,(1,'4-1-2018',15,18)
,(1,'5-1-2018',15,18)
,(1,'6-1-2018',11,18)
,(1,'7-1-2018',15,18)
,(2,'1-1-2019', 1, 3)
,(2,'2-1-2018', 2, 5)
,(2,'3-1-2018', 3, 0)
,(2,'4-1-2018', 3, 7)
,(2,'5-1-2018', 3, 4)
,(2,'6-1-2018', 3, 9)
,(2,'7-1-2018', 3, 7);
WITH cte AS
(
SELECT *
,LAG(Value2-Value1,2) OVER(PARTITION BY code ORDER BY [Date]) TwoDaysBack
,LAG(Value2-Value1,1) OVER(PARTITION BY code ORDER BY [Date]) Yesterday
,LEAD(Value2-Value1,1) OVER(PARTITION BY code ORDER BY [Date]) tomorrow
,LEAD(Value2-Value1,2) OVER(PARTITION BY code ORDER BY [Date]) TwoDaysAhead
FROM @tbl
)
SELECT *
FROM cte;
我不太明白,您想如何在过滤器中使用这些值来获得预期的输出。如果您需要这方面的帮助,请回来...
结果
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| code | Date | Value1 | Value2 | TwoDaysBack | Yesterday | tomorrow | TwoDaysAhead |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 1 | 2018-01-01 | 13 | 14 | NULL | NULL | 4 | -4 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 1 | 2018-01-02 | 14 | 18 | NULL | 1 | -4 | 3 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 1 | 2018-01-03 | 15 | 11 | 1 | 4 | 3 | 3 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 1 | 2018-01-04 | 15 | 18 | 4 | -4 | 3 | 7 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 1 | 2018-01-05 | 15 | 18 | -4 | 3 | 7 | 3 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 1 | 2018-01-06 | 11 | 18 | 3 | 3 | 3 | NULL |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 1 | 2018-01-07 | 15 | 18 | 3 | 7 | NULL | NULL |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 2 | 2018-01-02 | 2 | 5 | NULL | NULL | -3 | 4 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 2 | 2018-01-03 | 3 | 0 | NULL | 3 | 4 | 1 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 2 | 2018-01-04 | 3 | 7 | 3 | -3 | 1 | 6 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 2 | 2018-01-05 | 3 | 4 | -3 | 4 | 6 | 4 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 2 | 2018-01-06 | 3 | 9 | 4 | 1 | 4 | 2 |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 2 | 2018-01-07 | 3 | 7 | 1 | 6 | 2 | NULL |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
| 2 | 2019-01-01 | 1 | 3 | 6 | 4 | NULL | NULL |
+------+------------+--------+--------+-------------+-----------+----------+--------------+
简而言之:
LAG() 和 LEAD() 都采用所需值的参数,第二个参数是我们要跳过的行数,第三个参数是您可能指定的默认值以避免结果中出现 NULL,当范围内没有行时。
OVER() 子句将告诉任何 窗口函数 我们是否想将集合视为分组和排序顺序(否则系统将不知道什么是领先或落后。
with cte as (
select *,
lag(value2 - value1, 2) over (partition by code order by date) prev2,
lag(value2 - value1, 1) over (partition by code order by date) prev1,
lead(value2 - value1, 1) over (partition by code order by date) next1,
lead(value2 - value1, 2) over (partition by code order by date) next2
from tablename
)
select code, date, value1, value2
from cte
where prev2 > 2 and prev1 < 0 and next1 > 0 and next1 < 4 and next2 > 4
参见demo。
结果:
code | date | value1 | value2
---: | :------------------ | -----: | -----:
1 | 01/04/2018 00:00:00 | 15 | 18
2 | 01/04/2018 00:00:00 | 3 | 7
您对 code = 2
的预期结果与我的结果存在差异,因此请检查其有效性。