将 Scikit-Learn OneHotEncoder 与 Pandas DataFrame 一起使用
Using Scikit-Learn OneHotEncoder with a Pandas DataFrame
我正在尝试使用 Scikit-Learn 的 OneHotEncoder 将 Pandas DataFrame 中包含字符串的列替换为单热编码等效项。我的以下代码不起作用:
from sklearn.preprocessing import OneHotEncoder
# data is a Pandas DataFrame
jobs_encoder = OneHotEncoder()
jobs_encoder.fit(data['Profession'].unique().reshape(1, -1))
data['Profession'] = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))
它产生以下错误(列表中的字符串被省略):
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-91-3a1f568322f5> in <module>()
3 jobs_encoder = OneHotEncoder()
4 jobs_encoder.fit(data['Profession'].unique().reshape(1, -1))
----> 5 data['Profession'] = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))
/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in transform(self, X)
730 copy=True)
731 else:
--> 732 return self._transform_new(X)
733
734 def inverse_transform(self, X):
/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in _transform_new(self, X)
678 """New implementation assuming categorical input"""
679 # validation of X happens in _check_X called by _transform
--> 680 X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown)
681
682 n_samples, n_features = X_int.shape
/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in _transform(self, X, handle_unknown)
120 msg = ("Found unknown categories {0} in column {1}"
121 " during transform".format(diff, i))
--> 122 raise ValueError(msg)
123 else:
124 # Set the problematic rows to an acceptable value and
ValueError: Found unknown categories ['...', ..., '...'] in column 0 during transform
下面是一些示例数据:
data['Profession'] =
0 unkn
1 safe
2 rece
3 unkn
4 lead
...
111988 indu
111989 seni
111990 mess
111991 seni
111992 proj
Name: Profession, Length: 111993, dtype: object
我到底做错了什么?
OneHotEncoder 将分类整数特征编码为单热数值数组。它的 Transform 方法 returns 如果 sparse=True
是一个稀疏矩阵,否则它 returns 一个二维数组。
您不能将 二维数组 (或稀疏矩阵)转换为 Pandas 系列 。您必须为每个 类别.
创建一个 Pandas 系列(Pandas 数据帧中的一列)
我建议改为 pandas.get_dummies:
data = pd.get_dummies(data,prefix=['Profession'], columns = ['Profession'], drop_first=True)
编辑:
使用 Sklearn OneHotEncoder:
transformed = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))
#Create a Pandas DataFrame of the hot encoded column
ohe_df = pd.DataFrame(transformed, columns=jobs_encoder.get_feature_names())
#concat with original data
data = pd.concat([data, ohe_df], axis=1).drop(['Profession'], axis=1)
其他选项: 如果您使用 GridSearch it's recommanded to use ColumnTransformer and FeatureUnion with Pipeline or directly make_column_transformer
进行超参数调整
原来是Scikit-LearnsLabelBinarizer gave me better luck in converting the data to one-hot encoded format, with help from ,我的最终代码如下
import pandas as pd
from sklearn.preprocessing import LabelBinarizer
jobs_encoder = LabelBinarizer()
jobs_encoder.fit(data['Profession'])
transformed = jobs_encoder.transform(data['Profession'])
ohe_df = pd.DataFrame(transformed)
data = pd.concat([data, ohe_df], axis=1).drop(['Profession'], axis=1)
以下是 Kaggle Learn 推荐的一种方法。不要认为目前有更简单的方法可以从原始 pandas DataFrame
到单热编码 DataFrame
.
# Apply one-hot encoder to each column with categorical data
OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
OH_cols_train = pd.DataFrame(OH_encoder.fit_transform(X_train[low_cardinality_cols]))
OH_cols_valid = pd.DataFrame(OH_encoder.transform(X_valid[low_cardinality_cols]))
# One-hot encoding removed index; put it back
OH_cols_train.index = X_train.index
OH_cols_valid.index = X_valid.index
# Remove categorical columns (will replace with one-hot encoding)
num_X_train = X_train.drop(object_cols, axis=1)
num_X_valid = X_valid.drop(object_cols, axis=1)
# Add one-hot encoded columns to numerical features
OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1)
OH_X_valid = pd.concat([num_X_valid, OH_cols_valid], axis=1)
print(OH_X_train)
这样就可以了。如果您对可视化不感兴趣,请删除 plotly 部分。如果不需要降价,也可以将 printmd 更改为打印。
def fn_cat_onehot(df):
"""Generate onehoteencoded features for all categorical columns in df"""
printmd(f"df shape: {df.shape}")
# NaN handing
nan_count = df.isna().sum().sum()
if nan_count > 0:
printmd(f"NaN = **{nan_count}** will be categorized under feature_nan columns")
# generation
from sklearn.preprocessing import OneHotEncoder
model_oh = OneHotEncoder(handle_unknown="ignore", sparse=False)
for c in df.select_dtypes("category").columns:
printmd(f"Encoding **{c}**") # which column
matrix = model_oh.fit_transform(
df[[c]]
) # get a matrix of new features and values
names = model_oh.get_feature_names_out() # get names for these features
df_oh = pd.DataFrame(
data=matrix, columns=names, index=df.index
) # create df of these new features
display(df_oh.plot.hist())
df = pd.concat([df, df_oh], axis=1) # concat with existing df
df.drop(
c, axis=1, inplace=True
) # drop categorical column so that it is all numerical for modelling
printmd(f"#### New df shape: **{df.shape}**")
return df
我正在尝试使用 Scikit-Learn 的 OneHotEncoder 将 Pandas DataFrame 中包含字符串的列替换为单热编码等效项。我的以下代码不起作用:
from sklearn.preprocessing import OneHotEncoder
# data is a Pandas DataFrame
jobs_encoder = OneHotEncoder()
jobs_encoder.fit(data['Profession'].unique().reshape(1, -1))
data['Profession'] = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))
它产生以下错误(列表中的字符串被省略):
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-91-3a1f568322f5> in <module>()
3 jobs_encoder = OneHotEncoder()
4 jobs_encoder.fit(data['Profession'].unique().reshape(1, -1))
----> 5 data['Profession'] = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))
/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in transform(self, X)
730 copy=True)
731 else:
--> 732 return self._transform_new(X)
733
734 def inverse_transform(self, X):
/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in _transform_new(self, X)
678 """New implementation assuming categorical input"""
679 # validation of X happens in _check_X called by _transform
--> 680 X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown)
681
682 n_samples, n_features = X_int.shape
/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in _transform(self, X, handle_unknown)
120 msg = ("Found unknown categories {0} in column {1}"
121 " during transform".format(diff, i))
--> 122 raise ValueError(msg)
123 else:
124 # Set the problematic rows to an acceptable value and
ValueError: Found unknown categories ['...', ..., '...'] in column 0 during transform
下面是一些示例数据:
data['Profession'] =
0 unkn
1 safe
2 rece
3 unkn
4 lead
...
111988 indu
111989 seni
111990 mess
111991 seni
111992 proj
Name: Profession, Length: 111993, dtype: object
我到底做错了什么?
OneHotEncoder 将分类整数特征编码为单热数值数组。它的 Transform 方法 returns 如果 sparse=True
是一个稀疏矩阵,否则它 returns 一个二维数组。
您不能将 二维数组 (或稀疏矩阵)转换为 Pandas 系列 。您必须为每个 类别.
创建一个 Pandas 系列(Pandas 数据帧中的一列)我建议改为 pandas.get_dummies:
data = pd.get_dummies(data,prefix=['Profession'], columns = ['Profession'], drop_first=True)
编辑:
使用 Sklearn OneHotEncoder:
transformed = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))
#Create a Pandas DataFrame of the hot encoded column
ohe_df = pd.DataFrame(transformed, columns=jobs_encoder.get_feature_names())
#concat with original data
data = pd.concat([data, ohe_df], axis=1).drop(['Profession'], axis=1)
其他选项: 如果您使用 GridSearch it's recommanded to use ColumnTransformer and FeatureUnion with Pipeline or directly make_column_transformer
进行超参数调整原来是Scikit-LearnsLabelBinarizer gave me better luck in converting the data to one-hot encoded format, with help from
import pandas as pd
from sklearn.preprocessing import LabelBinarizer
jobs_encoder = LabelBinarizer()
jobs_encoder.fit(data['Profession'])
transformed = jobs_encoder.transform(data['Profession'])
ohe_df = pd.DataFrame(transformed)
data = pd.concat([data, ohe_df], axis=1).drop(['Profession'], axis=1)
以下是 Kaggle Learn 推荐的一种方法。不要认为目前有更简单的方法可以从原始 pandas DataFrame
到单热编码 DataFrame
.
# Apply one-hot encoder to each column with categorical data
OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
OH_cols_train = pd.DataFrame(OH_encoder.fit_transform(X_train[low_cardinality_cols]))
OH_cols_valid = pd.DataFrame(OH_encoder.transform(X_valid[low_cardinality_cols]))
# One-hot encoding removed index; put it back
OH_cols_train.index = X_train.index
OH_cols_valid.index = X_valid.index
# Remove categorical columns (will replace with one-hot encoding)
num_X_train = X_train.drop(object_cols, axis=1)
num_X_valid = X_valid.drop(object_cols, axis=1)
# Add one-hot encoded columns to numerical features
OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1)
OH_X_valid = pd.concat([num_X_valid, OH_cols_valid], axis=1)
print(OH_X_train)
这样就可以了。如果您对可视化不感兴趣,请删除 plotly 部分。如果不需要降价,也可以将 printmd 更改为打印。
def fn_cat_onehot(df):
"""Generate onehoteencoded features for all categorical columns in df"""
printmd(f"df shape: {df.shape}")
# NaN handing
nan_count = df.isna().sum().sum()
if nan_count > 0:
printmd(f"NaN = **{nan_count}** will be categorized under feature_nan columns")
# generation
from sklearn.preprocessing import OneHotEncoder
model_oh = OneHotEncoder(handle_unknown="ignore", sparse=False)
for c in df.select_dtypes("category").columns:
printmd(f"Encoding **{c}**") # which column
matrix = model_oh.fit_transform(
df[[c]]
) # get a matrix of new features and values
names = model_oh.get_feature_names_out() # get names for these features
df_oh = pd.DataFrame(
data=matrix, columns=names, index=df.index
) # create df of these new features
display(df_oh.plot.hist())
df = pd.concat([df, df_oh], axis=1) # concat with existing df
df.drop(
c, axis=1, inplace=True
) # drop categorical column so that it is all numerical for modelling
printmd(f"#### New df shape: **{df.shape}**")
return df