If statement, ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all()
If statement, ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all()
我将这段代码用于 if 语句:
for col in df2.columns:
a = np.array(df2[col])
p98 = stats.scoreatpercentile(a, 98)
p5 = stats.scoreatpercentile(a, 5)
maxv = df2.max(axis=0)
minv = df2.min(axis=0)
ratiomax = maxv/p98
print(ratiomax)
ratiomin = minv/p5
print(ratiomin)
if (ratiomax <= 1.1).bool() == True:
maxv = maxv
else: maxv = p98
if ratiomin <= 0.2:
minv = minv
else: minv = 95
两种类型的 if 语句都不起作用并抛出错误:
ValueError:Series 的真值不明确。使用 a.empty、a.bool()、a.item()、a.any() 或 a.all()
之前针对此错误给出的解决方案是 np.where 和从数据框中选择选择性值,但我的解决方案是关于 if 语句。
请帮忙。
谢谢
有几个奇怪的代码片段:
for col in df2.columns:
a = np.array(df2[col])
p98 = stats.scoreatpercentile(a, 98)
p5 = stats.scoreatpercentile(a, 5)
maxv = df2.max(axis=0)
minv = df2.min(axis=0)
ratiomax = maxv/p98
print(ratiomax)
ratiomin = minv/p5
print(ratiomin)
# no need for bool() conversion
# maxv = maxv ... eles is unnecessary
# this is the shorter version of your code:
if not ratiomax <= 1.1:
maxv = p98
# same here
if not ratiomin <= 0.2:
minv = 95
由于缺少 df2、np 和 stats 的样本值而未测试
我将这段代码用于 if 语句:
for col in df2.columns:
a = np.array(df2[col])
p98 = stats.scoreatpercentile(a, 98)
p5 = stats.scoreatpercentile(a, 5)
maxv = df2.max(axis=0)
minv = df2.min(axis=0)
ratiomax = maxv/p98
print(ratiomax)
ratiomin = minv/p5
print(ratiomin)
if (ratiomax <= 1.1).bool() == True:
maxv = maxv
else: maxv = p98
if ratiomin <= 0.2:
minv = minv
else: minv = 95
两种类型的 if 语句都不起作用并抛出错误:
ValueError:Series 的真值不明确。使用 a.empty、a.bool()、a.item()、a.any() 或 a.all()
之前针对此错误给出的解决方案是 np.where 和从数据框中选择选择性值,但我的解决方案是关于 if 语句。
请帮忙。
谢谢
有几个奇怪的代码片段:
for col in df2.columns:
a = np.array(df2[col])
p98 = stats.scoreatpercentile(a, 98)
p5 = stats.scoreatpercentile(a, 5)
maxv = df2.max(axis=0)
minv = df2.min(axis=0)
ratiomax = maxv/p98
print(ratiomax)
ratiomin = minv/p5
print(ratiomin)
# no need for bool() conversion
# maxv = maxv ... eles is unnecessary
# this is the shorter version of your code:
if not ratiomax <= 1.1:
maxv = p98
# same here
if not ratiomin <= 0.2:
minv = 95
由于缺少 df2、np 和 stats 的样本值而未测试