Pandas dataframe vectorizing/filtering: ValueError: Can only compare identically-labeled Series objects

Pandas dataframe vectorizing/filtering: ValueError: Can only compare identically-labeled Series objects

我有两个包含 NHL 曲棍球统计数据的数据框。一个包含过去十年每支球队参加的每场比赛,另一个是我想用计算值填充它的地方。简而言之,我想从一支球队的前五场比赛中获取一个指标,将其相加,然后将其放入另一个 df 中。我在下面修剪了我的 dfs 以排除其他统计数据,并且只会查看一个统计数据。

df_all包含所有游戏:

>>> df_all
        season      gameId playerTeam opposingTeam  gameDate  xGoalsFor  xGoalsAgainst
1         2008  2008020001        NYR          T.B  20081004      2.287          2.689
6         2008  2008020003        NYR          T.B  20081005      1.793          0.916
11        2008  2008020010        NYR          CHI  20081010      1.938          2.762
16        2008  2008020019        NYR          PHI  20081011      3.030          3.020
21        2008  2008020034        NYR          N.J  20081013      1.562          3.454
...        ...         ...        ...          ...       ...        ...            ...
142576    2015  2015030185        L.A          S.J  20160422      2.927          2.042
142581    2017  2017030171        L.A          VGK  20180411      1.275          2.279
142586    2017  2017030172        L.A          VGK  20180413      1.907          4.642
142591    2017  2017030173        L.A          VGK  20180415      2.452          3.159
142596    2017  2017030174        L.A          VGK  20180417      2.427          1.818

df_sum_all 将包含计算的统计数据,现在它有一堆空列:

>>> df_sum_all
     season team  xg5  xg10  xg15  xg20
0      2008  NYR    0     0     0     0
1      2009  NYR    0     0     0     0
2      2010  NYR    0     0     0     0
3      2011  NYR    0     0     0     0
4      2012  NYR    0     0     0     0
..      ...  ...  ...   ...   ...   ...
327    2014  L.A    0     0     0     0
328    2015  L.A    0     0     0     0
329    2016  L.A    0     0     0     0
330    2017  L.A    0     0     0     0
331    2018  L.A    0     0     0     0

这是我计算 xGoalsFor 和 xGoalsAgainst 比率的函数。

def calcRatio(statfor, statagainst, games, season, team, statsdf):
    tempFor = float(statsdf[(statsdf.playerTeam == team) & (statsdf.season == season)].nsmallest(games, 'gameDate').eval(statfor).sum())
    tempAgainst = float(statsdf[(statsdf.playerTeam == team) & (statsdf.season == season)].nsmallest(games, 'gameDate').eval(statagainst).sum())
    tempRatio = tempFor / tempAgainst
    return tempRatio

我相信这是合乎逻辑的。我输入我想从中得出比率的统计数据、要加总的比赛数、要比赛的赛季和球队,然后从哪里获取统计数据。我已经分别测试了这些功能,并且知道我可以很好地进行过滤,并对统计数据求和等等。这是 tempFor 计算的独立实现示例:

>>> statsdf = df_all
>>> team = 'TOR'
>>> season = 2015
>>> games = 3
>>> tempFor = float(statsdf[(statsdf.playerTeam == team) & (statsdf.season == season)].nsmallest(games, 'gameDate').eval(statfor).sum())
>>> print(tempFor)
8.618

看到了吗?它returns一个值。但是我不能在整个数据框中做同样的事情。我错过了什么?我认为它的工作方式基本上是针对每一行,它将 'xg5' 列设置为 calcRatio 函数的输出,该函数使用该行的 'season' 和 'team' 来过滤 df_all.

>>> df_sum_all['xg5'] = calcRatio('xGoalsFor','xGoalsAgainst',5,df_sum_all['season'], df_sum_all['team'], df_all)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 2, in calcRatio
  File "/home/sebastian/.local/lib/python3.6/site-packages/pandas/core/ops/__init__.py", line 1142, in wrapper
    raise ValueError("Can only compare identically-labeled " "Series objects")
ValueError: Can only compare identically-labeled Series objects

干杯,感谢您的帮助!

更新:我使用了 iterrows() 并且它运行良好,所以我一定不是很了解矢量化。虽然是相同的功能 - 为什么它以一种方式工作,而不是以另一种方式工作?

>>> emptyseries = []
>>> for index, row in df_sum_all.iterrows():
...     emptyseries.append(calcRatio('xGoalsFor','xGoalsAgainst',5,row['season'],row['team'], df_all))
... 
>>> df_sum_all['xg5'] = emptyseries
__main__:1: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
>>> df_sum_all
     season team       xg5  xg10  xg15  xg20
0      2008  NYR  0.826260     0     0     0
1      2009  NYR  1.288390     0     0     0
2      2010  NYR  0.915942     0     0     0
3      2011  NYR  0.730498     0     0     0
4      2012  NYR  0.980744     0     0     0
..      ...  ...       ...   ...   ...   ...
327    2014  L.A  0.823998     0     0     0
328    2015  L.A  1.147412     0     0     0
329    2016  L.A  1.054947     0     0     0
330    2017  L.A  1.369005     0     0     0
331    2018  L.A  0.721411     0     0     0

[332 rows x 6 columns]

"ValueError: Can only compare identically-labeled Series objects"

tempFor = float(statsdf[(statsdf.playerTeam == team) & (statsdf.season == season)].nsmallest(games, 'gameDate').eval(statfor).sum())
tempAgainst = float(statsdf[(statsdf.playerTeam == team) & (statsdf.season == season)].nsmallest(games, 'gameDate').eval(statagainst).sum())

变量的输入:

team: df_sum_all['team']
season: df_sum_all['season']
statsdf: df_all

所以在代码中,(statsdf.playerTeam == team),它将比较来自 df_sum_all[=21 的系列=] 和来自 df_all。 如果这两个标签不一样,你会看到上面的错误。