运行 在 R 中进行多次 For-Loop 并将结果保存在数据框中

Run For-Loop multiple times in R and save results in data frame

本人对R和论坛还是比较陌生,有错误的一两处还请见谅。我想要做的是:我想为每个 14 个变量生成 6000 个观测值。

这就是我到目前为止所做的。我已经用适当的长度为每个变量初始化了向量:

#Market1
price_1                           <- vector(mode = "numeric", length = 6002)
demandChartist_1                  <- vector(mode = "numeric", length = 6000)
demandFundamentalist_1            <- vector(mode = "numeric", length = 6001)
percentFT_Wf_1                    <- vector(mode = "numeric", length = 6001)
percentCT_Wc_1                    <- vector(mode = "numeric", length = 6001)
fitnessTradingFundamentalist_Af_1 <- vector(mode = "numeric", length = 6001)
fitnessTradingChartist_Ac_1       <- vector(mode = "numeric", length = 6001)

#Market2
price_2                           <- vector(mode = "numeric", length = 6002)
demandChartist_2                  <- vector(mode = "numeric", length = 6000)
demandFundamentalist_2            <- vector(mode = "numeric", length = 6001)
percentFT_Wf_2                    <- vector(mode = "numeric", length = 6001)
percentCT_Wc_2                    <- vector(mode = "numeric", length = 6001)
fitnessTradingFundamentalist_Af_2 <- vector(mode = "numeric", length = 6001)
fitnessTradingChartist_Ac_2       <- vector(mode = "numeric", length = 6001)

percentNoTrading                  <- vector(mode = "numeric", length = 6001)
T <- 1:6000

下一步是设置起始值。

# set the first 4 values for price equal to 0, 1 whatever otherwise we can't compute the previous periods
price_1[1:4]  <- 0 
price_2[1:4]  <- 0 
fitnessTradingChartist_Ac_1[1:3] <- 0
fitnessTradingFundamentalist_Af_1[1:3] <- 0
fitnessTradingChartist_Ac_2[1:3] <- 0
fitnessTradingFundamentalist_Af_2[1:3] <- 0
a       <- 1
b       <- 0.05
c       <- 0.05
d       <- 0.975
e       <- 300
F1      <- 0
F2      <- 0

我已经设法设置 For 循环,以便所有向量都填充随机生成的值。 (见代码)由于这些是随机生成的值,如果我可以多次执行循环并为每个变量创建一个数据框,模型的准确性将显着提高,其中存储了第一个 运行 的 6000 个观察值在第 1 列中,第二个 运行 的 6000 个观测值存储在第 2 列等中,我最终可以计算每个时期的平均值。

for (i in 4:6002) {
  # [i-2] weil fitness tradingchartist der jetzigen Periode Demand der Periode t-2 also 2 erfordert.
  demandChartist_1[i-2]  =  
    b * (price_1[i-2] - price_1[i-3]) + rnorm(1, mean=0, sd=0.05)
  # [i-2] weil fitness tradingFundamentalist der jetzigen Periode Demand der Periode t-2 also 2 erfordert.

  demandChartist_2[i-2]  =  
    b * (price_2[i-2] - price_2[i-3]) + rnorm(1, mean=0, sd=0.05)

  demandFundamentalist_1[i-2] = 
    c * (F1 - price_1[i-2]) + rnorm(1, mean=0, sd=0.01)

  demandFundamentalist_2[i-2] = 
    c * (F2 - price_2[i-2]) + rnorm(1, mean=0, sd=0.01)

  fitnessTradingChartist_Ac_1[i] = 
    (exp(price_1[i]) - exp(price_1[i-1])) * demandChartist_1[i-2] + 
    d * fitnessTradingChartist_Ac_1[i-1]

  fitnessTradingChartist_Ac_2[i] = 
    (exp(price_2[i]) - exp(price_2[i-1])) * demandChartist_2[i-2] + 
    d * fitnessTradingChartist_Ac_2[i-1]

  fitnessTradingFundamentalist_Af_1[i] = 
    (exp(price_1[i]) - exp(price_1[i-1])) * demandFundamentalist_1[i-2] + 
    d * fitnessTradingChartist_Ac_1[i-1]  

  fitnessTradingFundamentalist_Af_2[i] = 
    (exp(price_2[i]) - exp(price_2[i-1])) * demandFundamentalist_2[i-2] + 
    d * fitnessTradingChartist_Ac_2[i-1]  

  percentCT_Wc_1[i] = 
    exp(e * fitnessTradingChartist_Ac_1[i]) / 
    (exp(e * fitnessTradingChartist_Ac_1[i]) + 
       exp(e * fitnessTradingFundamentalist_Af_1[i]) + 
       exp(e * fitnessTradingChartist_Ac_2[i]) + 
       exp(e * fitnessTradingFundamentalist_Af_2[i]) +
       exp(0)
    )

  percentCT_Wc_2[i] = 
    exp(e * fitnessTradingChartist_Ac_2[i]) / 
    (exp(e * fitnessTradingChartist_Ac_1[i]) + 
       exp(e * fitnessTradingFundamentalist_Af_1[i]) +
       exp(e * fitnessTradingChartist_Ac_2[i]) + 
       exp(e * fitnessTradingFundamentalist_Af_2[i]) + 
       exp(0)
    )

  percentFT_Wf_1[i] = 
    exp(e * fitnessTradingFundamentalist_Af_1[i]) / 
    (exp(e * fitnessTradingChartist_Ac_1[i]) + 
       exp(e * fitnessTradingFundamentalist_Af_1[i]) +
       exp(e * fitnessTradingChartist_Ac_2[i]) + 
       exp(e * fitnessTradingFundamentalist_Af_2[i]) + 
       exp(0)
    )

  percentFT_Wf_2[i] = 
    exp(e * fitnessTradingFundamentalist_Af_2[i]) / 
    (exp(e * fitnessTradingChartist_Ac_1[i]) + 
       exp(e * fitnessTradingFundamentalist_Af_1[i]) +
       exp(e * fitnessTradingChartist_Ac_2[i]) + 
       exp(e * fitnessTradingFundamentalist_Af_2[i]) + 
       exp(0)
    )

  percentNoTrading[i] = 
    1- percentCT_Wc_1[i] - percentFT_Wf_1[i] - percentCT_Wc_2[i] - percentFT_Wf_2[i]

  price_1[i] = 
    price_1[i-1] + 
    a * ((percentCT_Wc_1[i-1] * demandChartist_1[i-1] + 
        percentFT_Wf_1[i-1] * demandFundamentalist_1[i-1]
          )
        ) + 
    rnorm(1, mean=0, sd=0.01)

  price_2[i] = 
    price_2[i-1] + 
    a * ((percentCT_Wc_2[i-1] * demandChartist_2[i-1] + 
        percentFT_Wf_2[i-1] * demandFundamentalist_2[i-1]
          )
        ) + 
    rnorm(1, mean=0, sd=0.01)
}

有人知道如何做到这一点吗?如果有任何帮助,我将不胜感激! 干杯

你的代码不是绝对不容易跟踪。

在这里,我将尝试更改的几点是您想要获得具有 50 列和 6000 个观察值的 14 个数据框。

# definition of dataframe
#Market1
price_1                           <- matrix(ncol = 50, nrow =6002, 0L)
demandChartist_1                  <- matrix(ncol = 50, nrow =6002, 0L)
demandFundamentalist_1            <- matrix(ncol = 50, nrow =6002, 0L)
percentFT_Wf_1                    <- matrix(ncol = 50, nrow =6002, 0L)
percentCT_Wc_1                    <- matrix(ncol = 50, nrow =6002, 0L)
fitnessTradingFundamentalist_Af_1 <- matrix(ncol = 50, nrow =6002, 0L)
fitnessTradingChartist_Ac_1       <- matrix(ncol = 50, nrow =6002, 0L)

#Market2
price_2                           <- matrix(ncol = 50, nrow =6002, 0L)
demandChartist_2                  <- matrix(ncol = 50, nrow =6002, 0L)
demandFundamentalist_2            <- matrix(ncol = 50, nrow =6002, 0L)
percentFT_Wf_2                    <- matrix(ncol = 50, nrow =6002, 0L)
percentCT_Wc_2                    <- matrix(ncol = 50, nrow =6002, 0L)
fitnessTradingFundamentalist_Af_2 <- matrix(ncol = 50, nrow =6002, 0L)
fitnessTradingChartist_Ac_2       <- matrix(ncol = 50, nrow =6002, 0L)

percentNoTrading                  <- matrix(ncol = 50, nrow =6002, 0L)

那么,你定义的第一个值:

#set the first 4 values for price equal to 0, 1 whatever otherwise we cant compute the previous periods
price_1[1:4,]  <- 0 
price_2[1:4,]  <- 0 
fitnessTradingChartist_Ac_1[1:3,] <- 0
fitnessTradingFundamentalist_Af_1[1:3,] <- 0
fitnessTradingChartist_Ac_2[1:3,] <- 0
fitnessTradingFundamentalist_Af_2[1:3,] <- 0
a       <- 1
b       <- 0.05
c       <- 0.05
d       <- 0.975
e       <- 300
F1      <- 0
F2      <- 0

最后,你的大块代码包括第二个列循环

for(j in 1:50)
{
  for (i in 4:6002) {
    # [i-2] weil fitness tradingchartist der jetzigen Periode Demand der Periode t-2 also 2 erfordert.
    demandChartist_1[i-2,j]  =  
      b * (price_1[i-2,j] - price_1[i-3,j]) + rnorm(1, mean=0, sd=0.05)
    # [i-2] weil fitness tradingFundamentalist der jetzigen Periode Demand der Periode t-2 also 2 erfordert.

    demandChartist_2[i-2,j]  =      b * (price_2[i-2,j] - price_2[i-3,j]) + rnorm(1, mean=0, sd=0.05)
    print("1 OK")
    demandFundamentalist_1[i-2,j] =     c * (F1 - price_1[i-2,j]) + rnorm(1, mean=0, sd=0.01)

    demandFundamentalist_2[i-2,j] =     c * (F2 - price_2[i-2,j]) + rnorm(1, mean=0, sd=0.01)

    fitnessTradingChartist_Ac_1[i,j] =     (exp(price_1[i,j]) - exp(price_1[i-1,j])) * demandChartist_1[i-2,j] + 
      d * fitnessTradingChartist_Ac_1[i-1,j]

    fitnessTradingChartist_Ac_2[i,j] =     (exp(price_2[i,j]) - exp(price_2[i-1,j])) * demandChartist_2[i-2,j] + 
      d * fitnessTradingChartist_Ac_2[i-1,j]

    fitnessTradingFundamentalist_Af_1[i,j] =     (exp(price_1[i,j]) - exp(price_1[i-1,j])) * demandFundamentalist_1[i-2,j] + 
      d * fitnessTradingChartist_Ac_1[i-1,j]  

    fitnessTradingFundamentalist_Af_2[i,j] =     (exp(price_2[i,j]) - exp(price_2[i-1,j])) * demandFundamentalist_2[i-2,j] + 
      d * fitnessTradingChartist_Ac_2[i-1,j]  

    percentCT_Wc_1[i,j] =     exp(e * fitnessTradingChartist_Ac_1[i,j]) / 
      (exp(e * fitnessTradingChartist_Ac_1[i,j]) + 
         exp(e * fitnessTradingFundamentalist_Af_1[i,j]) + 
         exp(e * fitnessTradingChartist_Ac_2[i,j]) + 
         exp(e * fitnessTradingFundamentalist_Af_2[i,j]) +
         exp(0)
      )

    percentCT_Wc_2[i,j] = 
      exp(e * fitnessTradingChartist_Ac_2[i,j]) / 
      (exp(e * fitnessTradingChartist_Ac_1[i,j]) + 
         exp(e * fitnessTradingFundamentalist_Af_1[i,j]) +
         exp(e * fitnessTradingChartist_Ac_2[i,j]) + 
         exp(e * fitnessTradingFundamentalist_Af_2[i,j]) + 
         exp(0)
      )

    percentFT_Wf_1[i,j] = 
      exp(e * fitnessTradingFundamentalist_Af_1[i,j]) / 
      (exp(e * fitnessTradingChartist_Ac_1[i,j]) + 
         exp(e * fitnessTradingFundamentalist_Af_1[i,j]) +
         exp(e * fitnessTradingChartist_Ac_2[i,j]) + 
         exp(e * fitnessTradingFundamentalist_Af_2[i,j]) + 
         exp(0)
      )

    percentFT_Wf_2[i,j] = 
      exp(e * fitnessTradingFundamentalist_Af_2[i,j]) / 
      (exp(e * fitnessTradingChartist_Ac_1[i,j]) + 
         exp(e * fitnessTradingFundamentalist_Af_1[i,j]) +
         exp(e * fitnessTradingChartist_Ac_2[i,j]) + 
         exp(e * fitnessTradingFundamentalist_Af_2[i,j]) + 
         exp(0)
      )

    percentNoTrading[i,j] = 
      1- percentCT_Wc_1[i,j] - percentFT_Wf_1[i,j] - percentCT_Wc_2[i,j] - percentFT_Wf_2[i,j]

    price_1[i,j] = 
      price_1[i-1,j] + 
      a * ((percentCT_Wc_1[i-1,j] * demandChartist_1[i-1,j] + 
              percentFT_Wf_1[i-1,j] * demandFundamentalist_1[i-1,j]
      )
      ) + 
      rnorm(1, mean=0, sd=0.01)

    price_2[i,j] = 
      price_2[i-1,j] + 
      a * ((percentCT_Wc_2[i-1,j] * demandChartist_2[i-1,j] + 
              percentFT_Wf_2[i-1,j] * demandFundamentalist_2[i-1,j]
      )
      ) + 
      rnorm(1, mean=0, sd=0.01)
  }
}

希望这就是您要找的。可能有更简单的方法,但首先需要对代码结构进行一些优化。