python,使用逻辑回归来查看哪个变量对正预测增加了更多权重

python, using logistic regression to see which variable is adding more weight towards a positive prediction

所以我有一个银行数据集,我必须在其中预测客户是否会接受定期存款。 我有一个名为工作的专栏;这是分类的,具有每个客户的工作类型。 我目前正处于 EDA 流程中,想弄清楚哪个工作类别对积极预测的贡献最大。

我打算用逻辑回归来做到这一点(不确定这是否正确,欢迎提出替代方法建议)。

这就是我所做的;

我为每个工作类别做了一个 k-hot 编码(并且每个工作类型都有 1-0 值),目标 i k-1 是否很热,Target_yes 的值为 1-0(1 = 客户接受了定期存款,0 = 客户不接受)。

    job_management  job_technician  job_entrepreneur    job_blue-collar     job_unknown     job_retired     job_admin.  job_services    job_self-employed   job_unemployed  job_housemaid   job_student
0   1   0   0   0   0   0   0   0   0   0   0   0
1   0   1   0   0   0   0   0   0   0   0   0   0
2   0   0   1   0   0   0   0   0   0   0   0   0
3   0   0   0   1   0   0   0   0   0   0   0   0
4   0   0   0   0   1   0   0   0   0   0   0   0
...     ...     ...     ...     ...     ...     ...     ...     ...     ...     ...     ...     ...
45206   0   1   0   0   0   0   0   0   0   0   0   0
45207   0   0   0   0   0   1   0   0   0   0   0   0
45208   0   0   0   0   0   1   0   0   0   0   0   0
45209   0   0   0   1   0   0   0   0   0   0   0   0
45210   0   0   1   0   0   0   0   0   0   0   0   0

45211 rows × 12 columns

目标列如下所示;

0        0
1        0
2        0
3        0
4        0
        ..
45206    1
45207    1
45208    1
45209    0
45210    0
Name: Target_yes, Length: 45211, dtype: int32

我将其拟合到 sklearn 逻辑回归模型并获得了系数。无法解释它们,我寻找替代方案并遇到了统计模型版本。对 logit 函数做同样的事情。在我在网上看到的例子中,他使用 sm.get_constants 作为 x 变量。

from sklearn.linear_model import LogisticRegression
from sklearn import metrics
model = LogisticRegression(solver='liblinear')
model.fit(vari,tgt)
model.score(vari,tgt)
df = pd.DataFrame(model.coef_)
df['inter'] = model.intercept_
print(df)

模型得分和print()df结果如下:

0.8830151954170445(model score)

print(df)
          0         1         2         3         4         5         6  \
0 -0.040404 -0.289274 -0.604957 -0.748797 -0.206201  0.573717 -0.177778   

          7         8         9        10        11     inter  
0 -0.530802 -0.210549  0.099326 -0.539109  0.879504 -1.795323 

当我使用 sm.get_constats 时,我得到类似于 sklearn logisticRegression 的系数,但是 Zscores(我打算用它来找到对积极预测贡献最大的工作类型)变成了 nan。

import statsmodels.api as sm
logit = sm.Logit(tgt, sm.add_constant(vari)).fit()
logit.summary2()

结果是:

E:\Programs\Anaconda\lib\site-packages\numpy\core\fromnumeric.py:2495: FutureWarning:

Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead.

E:\Programs\Anaconda\lib\site-packages\statsmodels\base\model.py:1286: RuntimeWarning:

invalid value encountered in sqrt

E:\Programs\Anaconda\lib\site-packages\scipy\stats\_distn_infrastructure.py:901: RuntimeWarning:

invalid value encountered in greater

E:\Programs\Anaconda\lib\site-packages\scipy\stats\_distn_infrastructure.py:901: RuntimeWarning:

invalid value encountered in less

E:\Programs\Anaconda\lib\site-packages\scipy\stats\_distn_infrastructure.py:1892: RuntimeWarning:

invalid value encountered in less_equal

Optimization terminated successfully.
         Current function value: 0.352610
         Iterations 13

Model:  Logit   Pseudo R-squared:   0.023
Dependent Variable:     Target_yes  AIC:    31907.6785
Date:   2019-11-18 10:17    BIC:    32012.3076
No. Observations:   45211   Log-Likelihood:     -15942.
Df Model:   11  LL-Null:    -16315.
Df Residuals:   45199   LLR p-value:    3.9218e-153
Converged:  1.0000  Scale:  1.0000
No. Iterations:     13.0000         
                  Coef.     Std.Err.    z   P>|z|   [0.025  0.975]
const            -1.7968    nan     nan     nan     nan     nan
job_management   -0.0390    nan     nan     nan     nan     nan
job_technician   -0.2882    nan     nan     nan     nan     nan
job_entrepreneur -0.6092    nan     nan     nan     nan     nan
job_blue-collar  -0.7484    nan     nan     nan     nan     nan
job_unknown      -0.2142    nan     nan     nan     nan     nan
job_retired       0.5766    nan     nan     nan     nan     nan
job_admin.       -0.1766    nan     nan     nan     nan     nan
job_services     -0.5312    nan     nan     nan     nan     nan
job_self-employed   -0.2106     nan     nan     nan     nan     nan
job_unemployed  0.1011  nan     nan     nan     nan     nan
job_housemaid   -0.5427     nan     nan     nan     nan     nan
job_student     0.8857  nan     nan     nan     nan     nan

如果我使用没有 sm.get_constats 的 Stat 模型 logit,我得到的系数与 sklearn Logistic 回归非常不同,但我得到 zscore 的值(都是负数)

import statsmodels.api as sm
logit = sm.Logit(tgt, vari).fit()
logit.summary2()

结果是:

Optimization terminated successfully.
         Current function value: 0.352610
         Iterations 6

Model:  Logit   Pseudo R-squared:   0.023
Dependent Variable:     Target_yes  AIC:    31907.6785
Date:   2019-11-18 10:18    BIC:    32012.3076
No. Observations:   45211   Log-Likelihood:     -15942.
Df Model:   11  LL-Null:    -16315.
Df Residuals:   45199   LLR p-value:    3.9218e-153
Converged:  1.0000  Scale:  1.0000
No. Iterations:     6.0000      
                  Coef.     Std.Err.    z        P>|z|  [0.025  0.975]
job_management  -1.8357     0.0299  -61.4917    0.0000  -1.8943     -1.7772
job_technician  -2.0849     0.0366  -56.9885    0.0000  -2.1566     -2.0132
job_entrepreneur -2.4060    0.0941  -25.5563    0.0000  -2.5905     -2.2215
job_blue-collar  -2.5452    0.0390  -65.2134    0.0000  -2.6217     -2.4687
job_unknown      -2.0110    0.1826  -11.0120    0.0000  -2.3689     -1.6531
job_retired      -1.2201    0.0501  -24.3534    0.0000  -1.3183     -1.1219
job_admin.       -1.9734    0.0425  -46.4478    0.0000  -2.0566     -1.8901
job_services     -2.3280    0.0545  -42.6871    0.0000  -2.4349     -2.2211
job_self-employed-2.0074    0.0779  -25.7739    0.0000  -2.1600     -1.8547
job_unemployed   -1.6957    0.0765  -22.1538    0.0000  -1.8457     -1.5457
job_housemaid    -2.3395    0.1003  -23.3270    0.0000  -2.5361     -2.1429
job_student      -0.9111    0.0722  -12.6195    0.0000  -1.0526     -0.7696

两者哪个更好? 还是我应该使用完全不同的方法?

I fit this to a sklearn logistic regression model and got the coefficients. Unable to interpret them, i looked for an alternative and came across stat model version.

print(df)
          0         1         2         3         4         5         6  \
0 -0.040404 -0.289274 -0.604957 -0.748797 -0.206201  0.573717 -0.177778   

          7         8         9        10        11     inter  
0 -0.530802 -0.210549  0.099326 -0.539109  0.879504 -1.795323 

解释是这样的: 对数几率求幂可以得到变量增加一个单位的几率比。因此,例如,如果 Target_yes(1 = 客户接受期限存款,0 表示客户未接受)= 1 且逻辑回归系数为 0.573717,则您可以断言 "accept" 是 exp(0.573717) = 1.7748519304802 乘以你在 "no accept".

中结果的几率