Flexible/Fuzzy 规则在 Isabelle/HOL 中的应用
Flexible/Fuzzy rule application in Isabelle/HOL
假设我有以下谓词 P
和规则 R
:
locale example =
fixes P :: "int ⇒ int ⇒ bool"
assumes R: "⋀a b c. a ≥ 2 ⟹ P (a*b) (a*c)"
我现在想将规则应用到R
来证明P 8 4
,但是当然直接应用规则失败了:
lemma (in example) "P 8 4"
proof (rule R) (* FAILS *)
相反,我必须在使用规则之前手动实例化等式:
lemma (in example) "P 8 4"
proof -
have "P (4*2) (4*1)"
by (rule R, simp)
thus "P 8 4"
by simp
qed
lemma (in example) "P 8 4"
using R[where a=2 and b=4 and c=2] by simp
下面的例子比较好。它只需要一个专门用于带有 2 个参数的谓词的引理,并且需要手动指定顶级谓词名称:
lemma back_subst2: "⟦P x' y'; x' = x; y' = y⟧ ⟹ P x y"
by force
lemma (in example) "P 8 4"
proof (rule back_subst2[where P=P], rule R)
show "2 ≤ (2 :: int)" by simp
show "2*4 = (8::int)" by simp
show "2*2 = (4::int)" by simp
qed
我的问题:当参数没有完全要求的形式时,是否有更好的方法来应用规则?最后一个例子可以改进吗?
我现在已经编写了自己的名为 fuzzy_rule
的方法来执行此操作:
lemma (in example) "P 8 4"
proof (fuzzy_rule R)
show "2 ≤ (2 :: int)" by simp
show "2*4 = (8::int)" by simp
show "2*2 = (4::int)" by simp
qed
假设我有以下谓词 P
和规则 R
:
locale example =
fixes P :: "int ⇒ int ⇒ bool"
assumes R: "⋀a b c. a ≥ 2 ⟹ P (a*b) (a*c)"
我现在想将规则应用到R
来证明P 8 4
,但是当然直接应用规则失败了:
lemma (in example) "P 8 4"
proof (rule R) (* FAILS *)
相反,我必须在使用规则之前手动实例化等式:
lemma (in example) "P 8 4"
proof -
have "P (4*2) (4*1)"
by (rule R, simp)
thus "P 8 4"
by simp
qed
lemma (in example) "P 8 4"
using R[where a=2 and b=4 and c=2] by simp
下面的例子比较好。它只需要一个专门用于带有 2 个参数的谓词的引理,并且需要手动指定顶级谓词名称:
lemma back_subst2: "⟦P x' y'; x' = x; y' = y⟧ ⟹ P x y"
by force
lemma (in example) "P 8 4"
proof (rule back_subst2[where P=P], rule R)
show "2 ≤ (2 :: int)" by simp
show "2*4 = (8::int)" by simp
show "2*2 = (4::int)" by simp
qed
我的问题:当参数没有完全要求的形式时,是否有更好的方法来应用规则?最后一个例子可以改进吗?
我现在已经编写了自己的名为 fuzzy_rule
的方法来执行此操作:
lemma (in example) "P 8 4"
proof (fuzzy_rule R)
show "2 ≤ (2 :: int)" by simp
show "2*4 = (8::int)" by simp
show "2*2 = (4::int)" by simp
qed