Error in Computing the Coherence Score – AttributeError: 'dict' object has no attribute 'id2token'
Error in Computing the Coherence Score – AttributeError: 'dict' object has no attribute 'id2token'
我是NLP初学者,第一次做Topic Modeling。我能够生成我的模型,但是我无法生成一致性指标。
将term-document矩阵转换成新的gensim格式,from df --> sparse matrix --> gensim corpus
sparse_counts = scipy.sparse.csr_matrix(data_dtm)
corpus = matutils.Sparse2Corpus(sparse_counts)
corpus
df_lemmatized.head()
# Gensim also requires dictionary of the all terms and their respective location in the term-document matrix
tfidfv = pickle.load(open("tfidf.pkl", "rb"))
id2word = dict((v, k) for k, v in tfidfv.vocabulary_.items())
id2word
这是我的模型:
lda = models.LdaModel(corpus=corpus, id2word=id2word, num_topics=15, passes=10, random_state=43)
lda.print_topics()
最后,这是我尝试使用一致性模型获得一致性分数的地方:
# Compute Perplexity
print('\nPerplexity: ', lda.log_perplexity(corpus))
# Compute Coherence Score
coherence_model_lda = CoherenceModel(model=lda, texts=df_lemmatized.long_title, dictionary=id2word, coherence='c_v')
coherence_lda = coherence_model_lda.get_coherence()
print('\nCoherence Score: ', coherence_lda)
这是错误:
---> 57 if not dictionary.id2token: # 可能没有在标准中初始化 gensim.corpora.Dictionary
58 setattr(字典, 'id2token', {v: k for k, v in dictionary.token2id.items()})
59
AttributeError: 'dict' 对象没有属性 'id2token'
我没有你的数据,所以我无法重现错误。所以,我来猜一猜!问题出在你的 id2word
内,它应该是 corpora.dictionary.Dictionary
而不仅仅是 dict
。因此,您需要执行以下操作:
>>> from gensim import corpora
>>>
>>> word2id = dict((k, v) for k, v in tfidfv.vocabulary_.items())
>>> d = corpora.Dictionary()
>>> d.id2token = id2word
>>> d.token2id = word2id
>>> #...
>>> # change `id2word` to `d`
>>> coherence_model_lda = CoherenceModel(model=lda, texts=df_lemmatized.long_title, dictionary=d, coherence='c_v')
而且我认为它现在应该可以正常工作了!
我是NLP初学者,第一次做Topic Modeling。我能够生成我的模型,但是我无法生成一致性指标。
将term-document矩阵转换成新的gensim格式,from df --> sparse matrix --> gensim corpus
sparse_counts = scipy.sparse.csr_matrix(data_dtm)
corpus = matutils.Sparse2Corpus(sparse_counts)
corpus
df_lemmatized.head()
# Gensim also requires dictionary of the all terms and their respective location in the term-document matrix
tfidfv = pickle.load(open("tfidf.pkl", "rb"))
id2word = dict((v, k) for k, v in tfidfv.vocabulary_.items())
id2word
这是我的模型:
lda = models.LdaModel(corpus=corpus, id2word=id2word, num_topics=15, passes=10, random_state=43)
lda.print_topics()
最后,这是我尝试使用一致性模型获得一致性分数的地方:
# Compute Perplexity
print('\nPerplexity: ', lda.log_perplexity(corpus))
# Compute Coherence Score
coherence_model_lda = CoherenceModel(model=lda, texts=df_lemmatized.long_title, dictionary=id2word, coherence='c_v')
coherence_lda = coherence_model_lda.get_coherence()
print('\nCoherence Score: ', coherence_lda)
这是错误:
---> 57 if not dictionary.id2token: # 可能没有在标准中初始化 gensim.corpora.Dictionary 58 setattr(字典, 'id2token', {v: k for k, v in dictionary.token2id.items()}) 59 AttributeError: 'dict' 对象没有属性 'id2token'
我没有你的数据,所以我无法重现错误。所以,我来猜一猜!问题出在你的 id2word
内,它应该是 corpora.dictionary.Dictionary
而不仅仅是 dict
。因此,您需要执行以下操作:
>>> from gensim import corpora
>>>
>>> word2id = dict((k, v) for k, v in tfidfv.vocabulary_.items())
>>> d = corpora.Dictionary()
>>> d.id2token = id2word
>>> d.token2id = word2id
>>> #...
>>> # change `id2word` to `d`
>>> coherence_model_lda = CoherenceModel(model=lda, texts=df_lemmatized.long_title, dictionary=d, coherence='c_v')
而且我认为它现在应该可以正常工作了!