Scipy.optimize.root 在 Matlab fsolve 工作时不收敛于 Python,为什么?

Scipy.optimize.root does not converge in Python while Matlab fsolve works, why?

我正在尝试使用 Python 查找名为 f 的函数的根 y。

这是我的代码:

def f(y):
    w,p1,p2,p3,p4,p5,p6 = y[:7] 
    t1 = w - 0.99006633*(p1**0.5) - (-1.010067)*((1-p1))
    t2 = w - 22.7235687*(p2**0.5) - (-1.010067)*((1-p2))
    t3 = w - 9.71323491*(p3**0.5) - (-1.010067)*((1-p3))
    t4 = w - 2.43852877*(p4**0.5) - (-1.010067)*((1-p4))
    t5 = w - 3.93640207*(p5**0.5) - (-1.010067)*((1-p5))
    t6 = w - 9.22688144*(p6**0.5) - (-1.010067)*((1-p6))
    t7 = p1 + p2 + p3 + p4 + p5 + p6 - 1
    return [t1,t2,t3,t4,t5,t6,t7]


x0 = np.array([-0.01,0.4,0.1,0.2,0.1,0.1,0.1])
sol = scipy.optimize.root(f, x0)
print sol 

Python 没有找到根。但是有一个,我在Matlab中用函数fsolve找到的。

是:

[0.3901、0.6166、0.0038、0.0202、0.2295、0.1076、0.0223]

我真的很想用Python。谁能解释为什么 Python 中的 scipy.optimize.root 不收敛而 Matlab 中的 fsolve 收敛?

供参考,scipy.optimize.solve也不收敛。

尝试不同的方法。对我来说,method="lm"(我猜是 Levenberg-Marquardt,但我不完全确定)效果很好:

import numpy as np
import scipy.optimize

def f(y):
    w,p1,p2,p3,p4,p5,p6 = y[:7]
    t1 = w - 0.99006633*(p1**0.5) - (-1.010067)*((1-p1))
    t2 = w - 22.7235687*(p2**0.5) - (-1.010067)*((1-p2))
    t3 = w - 9.71323491*(p3**0.5) - (-1.010067)*((1-p3))
    t4 = w - 2.43852877*(p4**0.5) - (-1.010067)*((1-p4))
    t5 = w - 3.93640207*(p5**0.5) - (-1.010067)*((1-p5))
    t6 = w - 9.22688144*(p6**0.5) - (-1.010067)*((1-p6))
    t7 = p1 + p2 + p3 + p4 + p5 + p6 - 1
    return [t1,t2,t3,t4,t5,t6,t7]


x0 = np.array([-0.01,0.4,0.1,0.2,0.1,0.1,0.1])
sol = scipy.optimize.root(f, x0, method='lm')

assert sol['success']
print 'Solution: ', sol.x
print 'Misfit: ', f(sol.x)

这产生:

Solution: [ 0.39012036  0.61656436  0.00377616  0.02017937  0.22954825 
            0.10763827  0.02229359]
Misfit: [0.0, 0.0, 1.1102230246251565e-16, -1.1102230246251565e-16,   
         1.1102230246251565e-16, 0.0, -2.2204460492503131e-16]

我真的有点惊讶 Levenberg-Marquardt 不是默认值。它通常是人们会尝试的第一个 "gradient-descent" 风格求解器。