从 R 中 Google CloudML 的训练中获取模型

Get model from training on Google CloudML in R

求助!我使用 cloudml_train("model.R", master_type = "complex_model_m_p100") 在 CloudML 上训练了一个模型。现在需要经过训练的模型。我没有在我的模型中指定任何适合保存的东西......假设它会 return 最后一个时期之后的权重 job_collect().

job_collect() 执行 return 训练输入 jobDir: gs://project/r-cloudml/staging

有什么方法可以得到模型的权重吗?或者使用可与 google 配合使用的回调来设置脚本?这是脚本

library(keras)

load("sspr.ndvi.tensor.RData")
load("sspr.highdem.tensor.RData")
load("sspr.lowdem.tensor.RData")
load("yspr.ndvi.tensor.RData")
load("yspr.highdem.tensor.RData")
load("yspr.lowdem.tensor.RData")

#model!
highres.crop.input<-layer_input(shape = c(51,51,1),name = "highres.crop_input")
lowdem.input<-layer_input(shape = c(51,51,1),name = "lowdem.input")

lowdem_output<-lowdem.input %>% 
  layer_gaussian_dropout(rate = 0.35) %>%
  layer_conv_2d(kernel_size = c(3, 3), strides = 1, filter = 14,
                activation = "relu", padding = "same",
                data_format = "channels_last") %>% 
  layer_max_pooling_2d(pool_size = c(3,3)) %>% 
  layer_conv_2d(kernel_size = c(3, 3), strides = 1, filter = 16,
                activation = "relu", padding = "same",
                data_format = "channels_last") %>% 
  layer_batch_normalization() %>% 
  layer_average_pooling_2d(pool_size = c(17,17)) %>% 
  layer_upsampling_2d(size = c(51,51),name = "lowdem_output")

inception_input0<- highres.crop.input %>%
  layer_gaussian_dropout(rate = 0.35) %>% 
  layer_conv_2d(kernel_size = c(3, 3), strides = 1, filter = 16,
                activation = "relu", padding = "same",
                data_format = "channels_last") %>% 
  layer_conv_2d(kernel_size = c(2, 2), filter = 16,
                activation = "relu", padding = "same") %>%
  layer_batch_normalization(name = "inception_input0") 

inception_output0<-inception_input0 %>% 
  layer_conv_2d(kernel_size = c(1,1),filters = 1,
                activation = "relu",padding = "same") %>% 
  layer_max_pooling_2d(pool_size = c(3,3)) %>% 
  layer_conv_2d(kernel_size = c(1,7),filters = 16,
                activation = "relu",padding = "same") %>% 
  layer_conv_2d(kernel_size = c(7,1),filters = 16,
                activation = "relu",padding = "same") %>% 
  layer_upsampling_2d(size = c(3,3), interpolation = "nearest",name = "inception_output0")

cnn_inter_output0<-layer_add(c(inception_input0,inception_output0,lowdem_output)) %>% 
  layer_conv_2d(kernel_size = c(1,5),filters = 6,
                activation = "relu",padding = "same") %>% 
  layer_conv_2d(kernel_size = c(5,1),filters = 6,
                activation = "relu",padding = "same",name = "cnn_inter_output0")
added_inception_highres0<-layer_add(c(highres.crop.input,cnn_inter_output0)) %>% 
  layer_conv_2d(kernel_size = c(1,1),filters = 4,
                activation = "relu",padding = "same",name = "added_inception_highres0")
#### 1 ####
inception_input1<- added_inception_highres0 %>%
  layer_gaussian_dropout(rate = 0.35) %>%
  layer_conv_2d(kernel_size = c(3, 3), strides = 1, filter = 16,
                activation = "relu", padding = "same",
                data_format = "channels_last") %>% 
  layer_conv_2d(kernel_size = c(3, 3), filter = 8,
                activation = "relu", padding = "same") %>% 
  layer_batch_normalization(name = "inception_input1") 

inception_output1<-inception_input1 %>% 
  layer_conv_2d(kernel_size = c(1,1),filters = 1,
                activation = "relu",padding = "same") %>% 
  layer_max_pooling_2d(pool_size = c(3,3)) %>% 
  layer_conv_2d(kernel_size = c(1,7),filters = 8,
                activation = "relu",padding = "same") %>% 
  layer_conv_2d(kernel_size = c(7,1),filters = 8,
                activation = "relu",padding = "same") %>% 
  layer_upsampling_2d(size = c(3,3), interpolation = "nearest",name = "inception_output1")

cnn_inter_output1<-layer_add(c(inception_input1,inception_output1)) %>% 
  layer_conv_2d(kernel_size = c(1,5),filters = 6,
                activation = "relu",padding = "same") %>% 
  layer_conv_2d(kernel_size = c(5,1),filters = 6,
                activation = "relu",padding = "same",name = "cnn_inter_output1")
added_inception_highres1<-cnn_inter_output1 %>% 
  layer_conv_2d(kernel_size = c(1,1),filters = 2,
                activation = "relu",padding = "same",name = "added_inception_highres1")
#### 2 ####
inception_input2<- added_inception_highres1 %>%
  layer_conv_2d(kernel_size = c(3, 3), strides = 1, filter = 16,
                activation = "relu", padding = "same",
                data_format = "channels_last") %>% 
  layer_conv_2d(kernel_size = c(3, 3), filter = 8,
                activation = "relu", padding = "same") %>% 
  layer_batch_normalization(name = "inception_input2") 

inception_output2<-inception_input2 %>% 
  layer_conv_2d(kernel_size = c(1,1),filters = 1,
                activation = "relu",padding = "same") %>% 
  layer_max_pooling_2d(pool_size = c(3,3)) %>% 
  layer_conv_2d(kernel_size = c(1,7),filters = 8,
                activation = "relu",padding = "same") %>% 
  layer_conv_2d(kernel_size = c(7,1),filters = 8,
                activation = "relu",padding = "same") %>% 
  layer_upsampling_2d(size = c(3,3), interpolation = "nearest",name = "inception_output2")

cnn_inter_output2<-layer_add(c(inception_input2,inception_output2)) %>% 
  layer_conv_2d(kernel_size = c(1,5),filters = 6,
                activation = "relu",padding = "same") %>% 
  layer_conv_2d(kernel_size = c(5,1),filters = 6,
                activation = "relu",padding = "same",name = "cnn_inter_output2")
added_inception_highres2<-cnn_inter_output2 %>% 
  layer_conv_2d(kernel_size = c(1,1),filters = 1,
                activation = "relu",padding = "same",name = "added_inception_highres2")


incept_dual<-keras_model(
  inputs = c(highres.crop.input,lowdem.input),
  outputs = added_inception_highres2
)
summary(incept_dual)

incept_dual %>% compile(loss = 'mse',
                              optimizer = 'Nadam',
                              metric = "mse")


incept_dual %>% fit(
  x = list(highres.crop_input = sspr.highdem.tensor, lowdem.input = sspr.lowdem.tensor),
  y = list(added_inception_highres2 = sspr.ndvi.tensor),
  epochs = 1000,
  batch_size = 32,
  validation_data=list(list(yspr.highdem.tensor,yspr.lowdem.tensor),yspr.ndvi.tensor),
  shuffle = TRUE 
)

看来您想使用 R 代码从 gs://project/r-cloudml/staging 加载模型来分析权重。

cloudml R 库具有 gs_copy 函数(https://cran.r-project.org/web/packages/cloudml/cloudml.pdf 的第 6 页),这可能会有所帮助。

您可能需要使用 gcloud auth 授权访问 GCS。然后你应该能够使用 gs_copy(gs://project/r-cloudml/staging, /local/directory) 将保存的模型移动到 R 环境(如 Jupyter 或 RStudio)

从那里您应该能够使用正常的 Keras R 库命令 load/analyze 权重模型。 https://keras.rstudio.com/articles/tutorial_save_and_restore.html

答案是在脚本中定义没有父路径的文件名


checkpoint_path="five_epoch_checkpoint.ckpt"
lastditch_callback <- callback_model_checkpoint(
  filepath = checkpoint_path,
  save_weights_only = TRUE,
  save_best_only = FALSE,
  save_freq = 5,
  period = 5,
  verbose = 0
)
best_path = "best.ckpt"
bestmod_callback <- callback_model_checkpoint(
  filepath = best_path,
  save_weights_only = TRUE,
  save_best_only = TRUE,
  mode = "auto",
  verbose = 0
)



incept_dual %>% fit(
  x = list(highres.crop_input = sspr.highdem.tensor, lowdem.input = sspr.lowdem.tensor),
  y = list(prediction = sspr.ndvi.tensor),
  epochs = 50,
  batch_size = 32,
  validation_data=list(list(yspr.highdem.tensor,yspr.lowdem.tensor),yspr.ndvi.tensor),
  callbacks = list(lastditch_callback,bestmod_callback),
  shuffle = TRUE 
)

save_model_hdf5(incept_dual,"incept_dual.h5")

five_epoch_checkpoint.ckptbest.ckptincept_dual.h5 都将出现在模型结果自动保存到的 google 存储桶中。不幸的是,我无法检索模型,但我现在可以在以后的运行中保存检查点和最终模型。