Numpy - 查找自定义 A nxn 矩阵和 B nx1 的乘积 Ax=b

Numpy - Find product Ax=b of custom A nxn matrix and B nx1

想从 Ax=b 中找到 x。首先我声明了两个矩阵,AnxnB nx1。他们的公式可以在下面看到。 为一个:

对于 b :

矩阵可以取任何n。在我的代码中,我给它的值是 10。我首先将它们设置为 zero 来声明它们。然后 f 我为两个矩阵声明 1,2n-1n 行的每个元素。对于 A,我还循环每个数字以获得所需的外观,每个相同的数字向前一列,从 n=2 直到 n-2。然后为了计算 Ax=b ,为了找到 x ,我使用乘法:

x = np.dot(np.linalg.inv(A), b) 

但没有得到正确答案。有什么帮助吗?我也完整地发布了我的代码:

import numpy as np

n = 10

################## AAAAA matrix #############################################
A = np.zeros([n, n], dtype=float)  # initialize to f zeros

# ------------------first row
A[0][0] = 6
A[0][1] = -4
A[0][2] = 1
# ------------------second row
A[1][0] = -4
A[1][1] = 6
A[1][2] = -4
A[1][3] = 1
# --------------two last rows-----
# n-2 row
A[- 2][- 1] = -4
A[- 2][- 2] = 6
A[- 2][- 3] = -4
A[- 2][- 4] = 1
# n-1 row
A[- 1][- 1] = 6
A[- 1][- 2] = -4
A[- 1][- 3] = 1

# --------------------------- from second to n-2 row --------------------------#
j = 0
for i in range(2, n - 2):
    if j == (n - 4):
        break
    A[i][j] = 1
    j = j + 1

j = 1
for i in range(2, n - 2):
    if j == (n - 3):
        break
    A[i][j] = -4
    j = j + 1

j = 2
for i in range(2, n - 2):
    if j == (n - 2):
        break
    A[i][j] = 6
    j = j + 1

j = 3
for i in range(2, n - 2):
    if j == (n - 1):
        break
    A[i][j] = -4
    j = j + 1

j = 4
for i in range(2, n - 2):
    if j == (n):
        break
    A[i][j] = 1
    j = j + 1
# -----------------------------end coding of 2nd to n-2 r-------------#
print("\nMatrix A is : \n", A)

####### b matrix ######################################
b = np.zeros(n,float).reshape((n,1))
b[0] = 3
b[1] = -1
#b[len(b) - 1] = 3
#b[len(b) - 2] = -1
b[[0,-1]]=3; b[[1,-2]]=-1

print("\nMatrix b is \n", b)

#################### result ########################
x = np.dot(np.linalg.inv(A), b)

print("\n\n The result is : \n", x)

实际上我得到了所有 1s 的结果,如您所见:

我会这样做:

# create matrix A
n=10
row = np.zeros(n+4)
row[:5] = [1,-4,6,-4,1]

A = np.zeros((n,n+4))
for i in range(n):
    A[i] = np.roll(row, i)

A = A[:,2:-2]

# create vector b
b = np.zeros(n)
b[[0,-1]] = 3
b[[1,-2]] = -1

# solution
x = np.linalg.inv(A) @ b  # equivalent to np.matmul(np.linalg.inv(A), b)

输出(x):

array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]

你也得到了。为什么您认为这是不正确的?

使用matmul方法使它:

import numpy as np
A = np.array([[1,2], [3,4]], dtype=float)
B = np.array([[3], [4]])
print(np.matmul(np.linalg.inv(A), B))