使用条件和函数向量化嵌套循环

Vectorizing nested loop with conditionals and functions

我有以下功能:

def F(x):    #F receives a numpy vector (x) with size (xsize*ysize)

    ff = np.zeros(xsize*ysize)

    count=0 

    for i in range(xsize):
       for j in range(ysize):

           a=function(i,j,xsize,ysize)

           if (a>xsize):
               ff[count] = x[count]*a
           else
               ff[count] = x[count]*i*j

           count = count +1

    return ff      

这里有一个细微差别,即(例如 xsize =4,ysize=3)

c=count
x[c=0] corresponds to x00 i=0,j=0
x[c=1]   x01   i=0, j=1
x[c=2]   x02   i=0, j=2   (i=0,  j = ysize-1)
x[c=3]   x10   i=1, j=0
...   ...  ...
x[c=n]   x32    i=3 j=2  (i=xsize-1, j=ysize-1)  

我的代码很简单

ff[c] = F[x[c]*a (condition 1)
ff[c] = F[x[c]*i*j (condition 2)

我可以使用广播来避免嵌套循环,如 link:

中所述

但在这种情况下,我必须调用函数 (i,j,xsize,ysize) 然后我有条件。 我真的需要知道 i 和 j 的值。

是否可以向量化此函数?

编辑:function(i,j,xsize,ysize) 将使用 sympy 对 return 浮点数执行符号计算。所以 a 是一个浮点数,而不是一个符号表达式。

首先要注意的是,您的函数 F(x) 对于每个索引都可以描述为 x(idx) * weight(idx),其中权重仅取决于 x 的维度。因此,让我们根据函数 get_weights_for_shape 来构造我们的代码,这样 F 就相当简单了。为简单起见,weights 将是一个 (xsize by size) 矩阵,但我们也可以让 F 用于平面输入:

def F(x, xsize=None, ysize=None):
    if len(x.shape) == 2:
        # based on how you have put together your question this seems like the most reasonable representation.
        weights = get_weights_for_shape(*x.shape)
        return x * weights
    elif len(x.shape) == 1 and xsize * ysize == x.shape[0]:
        # single dimensional input with explicit size, use flattened weights.
        weights = get_weights_for_shape(xsize, ysize)
        return x * weights.flatten()
    else:
        raise TypeError("must take 2D input or 1d input with valid xsize and ysize")


# note that get_one_weight=function can be replaced with your actual function.
def get_weights_for_shape(xsize, ysize, get_one_weight=function):
    """returns weights matrix for F for given input shape"""
    # will use (xsize, ysize) shape for these calculations.
    weights = np.zeros((xsize,ysize))
    #TODO: will fill in calculations here
    return weights

所以首先我们要为每个元素 运行 你的 function(我在参数中使用别名 get_one_weight),你说过这个函数不能向量化所以我们可以只使用列表理解。我们想要一个具有相同形状 (xsize,ysize) 的矩阵 a,因此对于嵌套列表的理解有点倒退:

# notice that the nested list makes the loops in opposite order:
# [ROW for i in Xs]
#  ROW = [f() for j in Ys]
a = np.array([[get_one_weight(i,j,xsize,ysize)
                    for j in range(ysize)
              ] for i in range(xsize)])

有了这个矩阵 a > xsize 将给出一个用于条件赋值的布尔数组:

case1 = a > xsize
weights[case1] = a[case1]

对于另一种情况,我们使用索引 ij。要向量化二维索引,我们可以使用 np.meshgrid

[i,j] = np.meshgrid(range(xsize), range(ysize), indexing='ij')
case2 = ~case1 # could have other cases, in this case it's just the rest.
weights[case2] = i[case2] * j[case2]

return weights #that covers all the calculations

把它们放在一起就是完全向量化的函数:

# note that get_one_weight=function can be replaced with your actual function.
def get_weights_for_shape(xsize, ysize, get_one_weight=function):
    """returns weights matrix for F for given input shape"""
    # will use (xsize, ysize) shape for these calculations.
    weights = np.zeros((xsize,ysize))

    # notice that the nested list makes the loop order confusing:
    # [ROW for i in Xs]
    #  ROW = [f() for j in Ys]
    a = np.array([[get_one_weight(i,j,xsize,ysize)
                        for j in range(ysize)
                  ] for i in range(xsize)])

    case1 = (a > xsize)
    weights[case1] = a[case1]

    # meshgrid lets us use indices i and j as vectorized matrices.
    [i,j] = np.meshgrid(range(xsize), range(ysize), indexing='ij')
    case2 = ~case1
    weights[case2] = i[case2] * j[case2]
    #could have more than 2 cases if applicable.

    return weights

这涵盖了大部分内容。对于您的特定情况,因为这种繁重的计算仅依赖于输入的形状,如果您希望使用类似大小的输入重复调用此函数,您可以缓存所有先前计算的权重:

def get_weights_for_shape(xsize, ysize, _cached_weights={}):
    if (xsize, ysize) not in _cached_weights:
        #assume we added an underscore to real function written above
        _cached_weights[xsize,ysize] = _get_weights_for_shape(xsize, ysize)
    return _cached_weights[xsize,ysize]

据我所知,这似乎是您将获得的最优化的。唯一的改进是矢量化 function(即使这意味着只是在多个线程中并行调用它)或者如果 .flatten() 制作了一个可以改进的昂贵副本,但我不完全确定如何.