使用 Tensorflow 2.0 模型子类化访问层的 input/output

Accessing layer's input/output using Tensorflow 2.0 Model Sub-classing

在做大学练习时,我使用了 TF2.0 的模型子类化 API。这是我的代码(它是 Alexnet 架构,如果你想知道......):

class MyModel(Model):
    def __init__(self):
        super(MyModel, self).__init__()
        # OPS
        self.relu = Activation('relu', name='ReLU')
        self.maxpool = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid', name='MaxPool')
        self.softmax = Activation('softmax', name='Softmax')

        # Conv layers
        self.conv1 = Conv2D(filters=96, input_shape=(224, 224, 3), kernel_size=(11, 11), strides=(4, 4), padding='same',
                            name='conv1')
        self.conv2a = Conv2D(filters=128, kernel_size=(5, 5), strides=(1, 1), padding='same', name='conv2a')
        self.conv2b = Conv2D(filters=128, kernel_size=(5, 5), strides=(1, 1), padding='same', name='conv2b')
        self.conv3 = Conv2D(filters=384, kernel_size=(3, 3), strides=(1, 1), padding='same', name='conv3')
        self.conv4a = Conv2D(filters=192, kernel_size=(3, 3), strides=(1, 1), padding='same', name='conv4a')
        self.conv4b = Conv2D(filters=192, kernel_size=(3, 3), strides=(1, 1), padding='same', name='conv4b')
        self.conv5a = Conv2D(filters=128, kernel_size=(3, 3), strides=(1, 1), padding='same', name='conv5a')
        self.conv5b = Conv2D(filters=128, kernel_size=(3, 3), strides=(1, 1), padding='same', name='conv5b')

        # Fully-connected layers

        self.flatten = Flatten()

        self.dense1 = Dense(4096, input_shape=(100,), name='FC_4096_1')
        self.dense2 = Dense(4096, name='FC_4096_2')
        self.dense3 = Dense(1000, name='FC_1000')

        # Network definition

    def call(self, x, **kwargs):
        x = self.conv1(x)
        x = self.relu(x)
        x = tf.nn.local_response_normalization(x, depth_radius=2, alpha=2e-05, beta=0.75, bias=1.0)
        x = self.maxpool(x)

        x = tf.concat((self.conv2a(x[:, :, :, :48]), self.conv2b(x[:, :, :, 48:])), 3)
        x = self.relu(x)
        x = tf.nn.local_response_normalization(x, depth_radius=2, alpha=2e-05, beta=0.75, bias=1.0)
        x = self.maxpool(x)

        x = self.conv3(x)
        x = self.relu(x)
        x = tf.concat((self.conv4a(x[:, :, :, :192]), self.conv4b(x[:, :, :, 192:])), 3)
        x = self.relu(x)
        x = tf.concat((self.conv5a(x[:, :, :, :192]), self.conv5b(x[:, :, :, 192:])), 3)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.flatten(x)

        x = self.dense1(x)
        x = self.relu(x)
        x = self.dense2(x)
        x = self.relu(x)
        x = self.dense3(x)
        return self.softmax(x)

我的目标是访问任意层的输出(为了最大化特定神经元的激活,如果你必须确切知道:))。问题是试图访问任何层的输出,我得到一个属性错误。例如:

model = MyModel()
print(model.get_layer('conv1').output)
# => AttributeError: Layer conv1 has no inbound nodes.

我在 SO 中发现了一些关于此错误的问题,所有问题都声称我必须在第一层定义输入形状,但如您所见 - 它已经完成(参见 [= 的定义14=] 在 __init__ 函数中)!

我确实发现,如果我定义了一个 keras.layers.Input 对象,我确实设法获得了 conv1 的输出,但是尝试访问更深的层失败了,例如:

model = MyModel()
I = tf.keras.Input(shape=(224, 224, 3))
model(I)
print(model.get_layer('conv1').output)
# prints Tensor("my_model/conv1/Identity:0", shape=(None, 56, 56, 96), dtype=float32)
print(model.get_layer('FC_1000').output)
# => AttributeError: Layer FC_1000 has no inbound nodes.

我用谷歌搜索了途中遇到的每一个异常,但没有找到答案。在这种情况下,我如何访问任何图层的 input/output(或 input/output _shape 属性)?

在 sub-classed 模型中没有层图,它只是一段代码(模型 call 函数)。创建模型 class 实例时未定义层连接。因此,我们需要先通过调用 call 方法来构建模型。

试试这个:

model = MyModel()
inputs = tf.keras.Input(shape=(224,224,3))
model.call(inputs)
# instead of model(I) in your code.

创建此模型图后。

for i in model.layers:
  print(i.output)
# output
# Tensor("ReLU_7/Relu:0", shape=(?, 56, 56, 96), dtype=float32)
# Tensor("MaxPool_3/MaxPool:0", shape=(?, 27, 27, 96), dtype=float32)
# Tensor("Softmax_1/Softmax:0", shape=(?, 1000), dtype=float32)
# ...