LSTM 训练期间持续损失 - PyTorch

Constant loss during LSTM training - PyTorch

我正在尝试实现一个 LSTM 网络来预测句子中的下一个单词。这是我第一次构建神经网络,我对我在 Internet 上找到的所有信息感到困惑。

我正在尝试使用以下架构:

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim


class WordLSTM(nn.Module):
    def __init__(self, vocabulary_size, embedding_dim, hidden_dim):
        super().__init__()

        # Word embeddings
        self.encoder = nn.Embedding(vocabulary_size, embedding_dim)

        # LSTM input dim is embedding_dim, output dim is hidden_dim
        self.lstm = nn.LSTM(embedding_dim, hidden_dim)

        # Linear layer to map hidden states to vocabulary space
        self.decoder = nn.Linear(hidden_dim, vocabulary_size)

    def forward(self, sentence):
        encoded = self.encoder(sentence)
        output, _ = self.lstm(
            encoded.view(len(sentence), 1, -1))
        decoded = self.decoder(output)
        word_scores = F.softmax(decoded, dim=1)

        return word_scores[-1].view(1, -1)

我用数据集中的所有句子创建了一个字典,每个单词都使用字典中各自的索引进行编码。它们后面跟着一个编码的下一个词(目标向量)。这是我正在尝试使用的一堆训练示例:

[tensor([39]), tensor([13698])],
[tensor([   39, 13698]), tensor([11907])],
[tensor([   39, 13698, 11907]), tensor([70])]

我在训练期间一次传递一个句子,所以我的批量大小始终为 1。

NUM_EPOCHS = 100
LEARNING_RATE = 0.0005

rnn = WordLSTM(vocab_size, 64, 32)

optimizer = optim.SGD(rnn.parameters(), lr=LEARNING_RATE)

for epoch in range(NUM_EPOCHS):        
    training_example = generate_random_training_example(training_ds)
    optimizer.zero_grad()

    for sentence, next_word in training_example:
        output = rnn(sentence)
        loss = F.cross_entropy(output, next_word)
        loss.backward()

    optimizer.step()

    print(f"Epoch: {epoch}/{NUM_EPOCHS} Loss: {loss:.4f}")

然而,当我开始训练时,损失并没有随时间变化:

Epoch: 0/100 Loss: 10.3929
Epoch: 1/100 Loss: 10.3929
Epoch: 2/100 Loss: 10.3929
Epoch: 3/100 Loss: 10.3929
Epoch: 4/100 Loss: 10.3929
Epoch: 5/100 Loss: 10.3929
Epoch: 6/100 Loss: 10.3929

我已经尝试将 optimizer.zero_grad()optimizer.step() 放在不同的位置,但也没有帮助。

在这种情况下可能是什么问题?是我计算损失的方式不对,还是传递的张量格式不对?

删除F.softmax。你做 log_softmax(softmax(x)).

CrossEntropyLoss

This criterion combines nn.LogSoftmax() and nn.NLLLoss() in one single class.

import torch as t

class Net(t.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.emb = t.nn.Embedding(100, 8)
        self.lstm = t.nn.LSTM(8, 16, batch_first=True)
        self.linear = t.nn.Linear(16, 100)

    def forward(self, x):
        x = self.emb(x)
        x, _ = self.lstm(x)
        x = self.linear(x[:, -1])
        #x = t.nn.Softmax(dim=1)(x)
        return x

t.manual_seed(0)
net = Net()

batch_size = 1
X = t.LongTensor(batch_size, 5).random_(0, 100)
Y = t.LongTensor(batch_size).random_(0, 100)

optimizer = t.optim.Adam(net.parameters())
criterion = t.nn.CrossEntropyLoss()

for epoch in range(10):
    optimizer.zero_grad()
    output = net(X)
    loss = criterion(output, Y)
    loss.backward()
    optimizer.step()

    print(loss.item())
4.401515960693359
4.389760494232178
4.377873420715332
4.365848541259766
4.353675365447998
4.341339588165283
4.328824520111084
4.316114902496338
4.303196430206299
4.2900567054748535

未注释 t.nn.Softmax:

4.602912902832031
4.6027679443359375
4.602619171142578
4.6024675369262695
4.602311611175537
4.602152347564697
4.601987361907959
4.601818084716797
4.6016435623168945
4.601463794708252

在评估期间使用 softmax:

net.eval()
t.nn.Softmax(dim=1)(net(X[0].view(1,-1)))
tensor([[0.0088, 0.0121, 0.0098, 0.0072, 0.0085, 0.0083, 0.0083, 0.0108, 0.0127,
         0.0090, 0.0094, 0.0082, 0.0099, 0.0115, 0.0094, 0.0107, 0.0081, 0.0096,
         0.0087, 0.0131, 0.0129, 0.0127, 0.0118, 0.0107, 0.0087, 0.0073, 0.0114,
         0.0076, 0.0103, 0.0112, 0.0104, 0.0077, 0.0116, 0.0091, 0.0091, 0.0104,
         0.0106, 0.0094, 0.0116, 0.0091, 0.0117, 0.0118, 0.0106, 0.0113, 0.0083,
         0.0091, 0.0076, 0.0089, 0.0076, 0.0120, 0.0107, 0.0139, 0.0097, 0.0124,
         0.0096, 0.0097, 0.0104, 0.0128, 0.0084, 0.0119, 0.0096, 0.0100, 0.0073,
         0.0099, 0.0086, 0.0090, 0.0089, 0.0098, 0.0102, 0.0086, 0.0115, 0.0110,
         0.0078, 0.0097, 0.0115, 0.0102, 0.0103, 0.0107, 0.0095, 0.0083, 0.0090,
         0.0120, 0.0085, 0.0113, 0.0128, 0.0074, 0.0096, 0.0123, 0.0106, 0.0105,
         0.0101, 0.0112, 0.0086, 0.0105, 0.0121, 0.0103, 0.0075, 0.0098, 0.0082,
         0.0093]], grad_fn=)