java.lang.ClassCastException: org.apache.avro.generic.GenericData$Record 无法转换为 java.lang.String
java.lang.ClassCastException: org.apache.avro.generic.GenericData$Record cannot be cast to java.lang.String
我正在执行 kafka 消费者程序以从主题中读取 avro 格式的数据。合并通用记录后,我遍历通用记录并获得通用 record.value()。我想将值转换为字符串但失败了。
def getProp():Properties = {
val props = new Properties()
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, servers)
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, serializer)
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, deserializer)
props.put(ConsumerConfig.GROUP_ID_CONFIG, groupid)
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffset)
//props.put("specific.avro.reader", specificAvroReader)
props.put("schema.registry.url", schemaRegestry)
props.put("consumer-timeout-ms", "30000")
props
}
def consume(props: Properties, spark: SparkSession) = {
val conSumer = new KafkaConsumer[String, String](props)
conSumer.subscribe(util.Collections.singletonList(topic))
while (true) {
val records: ConsumerRecords[String,String] = conSumer.poll(100)
for(record <- records.asScala){
val m:String = record.value() ```
error:-
20/02/01 05:04:55 INFO internals.ConsumerCoordinator: Setting newly assigned partitions [xx1, xx2, xx3, xx4] for group xxxxxx
Exception in thread "main" java.lang.ClassCastException: org.apache.avro.generic.GenericData$Record cannot be cast to java.lang.String
at com.hbc.IntellicheckConsumer$$anonfun$consume.apply(TestScala.scala:52)
at com.hbc.IntellicheckConsumer$$anonfun$consume.apply(TestScala.scala:49)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
at com.hbc.IntellicheckConsumer.consume(TestScala.scala:49)
at com.hbc.TestScala$.main(TestScala.scala:93)
at com.hbc.TestScala.main(TestScala.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:755)
at org.apache.spark.deploy.SparkSubmit$.doRunMain(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
20/02/01 05:04:55 INFO spark.SparkContext: Invoking stop() from shutdown hook
20/02/01 05:04:55 INFO server.AbstractConnector: Stopped Spark@33aecef7{HTTP/1.1,[http/1.1]}{0.0.0.0:4041}
20/02/01 05:04:55 INFO ui.SparkUI: Stopped Spark web UI at http://172.1
您是在告诉消费者您需要字符串
new KafkaConsumer[String, String](props)
ConsumerRecords[String,String]
相反,您可能需要
new KafkaConsumer[String, GenericRecord](props)
ConsumerRecords[String,GenericRecord]
is there any way to read those avro recors in a spark dataframe for further processing
好吧,您必须重写所有代码才能实际使用 Spark Structured Streaming
你不需要 spark-submit
只需要 运行 Scala 代码
the value i receive is in the form of nested json
如果您只是将 JSON 字符串放入字段,则不确定为什么要使用 Avro
我正在执行 kafka 消费者程序以从主题中读取 avro 格式的数据。合并通用记录后,我遍历通用记录并获得通用 record.value()。我想将值转换为字符串但失败了。
def getProp():Properties = {
val props = new Properties()
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, servers)
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, serializer)
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, deserializer)
props.put(ConsumerConfig.GROUP_ID_CONFIG, groupid)
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffset)
//props.put("specific.avro.reader", specificAvroReader)
props.put("schema.registry.url", schemaRegestry)
props.put("consumer-timeout-ms", "30000")
props
}
def consume(props: Properties, spark: SparkSession) = {
val conSumer = new KafkaConsumer[String, String](props)
conSumer.subscribe(util.Collections.singletonList(topic))
while (true) {
val records: ConsumerRecords[String,String] = conSumer.poll(100)
for(record <- records.asScala){
val m:String = record.value() ```
error:-
20/02/01 05:04:55 INFO internals.ConsumerCoordinator: Setting newly assigned partitions [xx1, xx2, xx3, xx4] for group xxxxxx
Exception in thread "main" java.lang.ClassCastException: org.apache.avro.generic.GenericData$Record cannot be cast to java.lang.String
at com.hbc.IntellicheckConsumer$$anonfun$consume.apply(TestScala.scala:52)
at com.hbc.IntellicheckConsumer$$anonfun$consume.apply(TestScala.scala:49)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
at com.hbc.IntellicheckConsumer.consume(TestScala.scala:49)
at com.hbc.TestScala$.main(TestScala.scala:93)
at com.hbc.TestScala.main(TestScala.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:755)
at org.apache.spark.deploy.SparkSubmit$.doRunMain(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
20/02/01 05:04:55 INFO spark.SparkContext: Invoking stop() from shutdown hook
20/02/01 05:04:55 INFO server.AbstractConnector: Stopped Spark@33aecef7{HTTP/1.1,[http/1.1]}{0.0.0.0:4041}
20/02/01 05:04:55 INFO ui.SparkUI: Stopped Spark web UI at http://172.1
您是在告诉消费者您需要字符串
new KafkaConsumer[String, String](props)
ConsumerRecords[String,String]
相反,您可能需要
new KafkaConsumer[String, GenericRecord](props)
ConsumerRecords[String,GenericRecord]
is there any way to read those avro recors in a spark dataframe for further processing
好吧,您必须重写所有代码才能实际使用 Spark Structured Streaming
你不需要 spark-submit
只需要 运行 Scala 代码
the value i receive is in the form of nested json
如果您只是将 JSON 字符串放入字段,则不确定为什么要使用 Avro