unpickling 模型文件 python scikit-learn(Pipeline(memory=None, steps=None, verbose=None))

unpickling model file python scikit-learn(Pipeline(memory=None, steps=None, verbose=None))

我正在尝试使用以下代码将 pickle 文件从 Python 2 转换为 Python 3

import os
import dill
import pickle
import argparse


def convert(old_pkl):
    """
    Convert a Python 2 pickle to Python 3
    """
    # Make a name for the new pickle
    new_pkl = os.path.splitext(os.path.basename(old_pkl))[0]+"_p3.pkl"

    # Convert Python 2 "ObjectType" to Python 3 object
    dill._dill._reverse_typemap["ObjectType"] = object

    # Open the pickle using latin1 encoding
    with open(old_pkl, "rb") as f:
        loaded = pickle.load(f, encoding="bytes")

    # Re-save as Python 3 pickle
    with open(new_pkl, "wb") as outfile:
        pickle.dump(loaded, outfile)

酸洗工作正常。但是,问题是当我尝试打印 Python3 腌制文件的输出而不是显示在下面时:

model = Pipeline([('count', CountVectorizer())
])

print(model)
Pipeline(memory=None,
     steps=[('count_vectorizer', CountVectorizer(analyzer='word', binary=False, decode_error='strict',
        dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
        lowercase=True, max_df=1.0, max_features=None, min_df=1,
        ngram_range=(1, 1), preprocessor=None, stop_words=None)])

显示如下:

Pipeline(memory=None, steps=None, verbose=None) 

找到解决方案:

在解压文件时我使用 encoding 作为 bytes 而不是 latin1.

使用 latin1 编码打开 pickle

with open(old_pkl, "rb") as f:
    loaded = pickle.load(f, encoding="latin1")

一切正常。为了更好地说明,请参阅 this