如何使用 dplyr 计算与 rowmean 的比率
How to calculate ratio to the rowmean using dplyr
我有一个数据框,其中包含不同样本中基因的定量值,我想将每个值除以行平均值。后跟所有值的 log2。
这可以通过 base R 完成,如下所示,但我无法使用管道使其工作。
示例数据框:
df <- data.frame("Gene_Symbol" = c("Gene1","Gene2","Gene3","Gene4","Gene5","Gene6","Gene7"),
"Sample1" = c(85657.97656,54417.78906,110949.3281,53197.45313,87156.80469,NA,23880.2832),
"Sample2" = c(10423.40918,41660.73047,40094.54688,49519.78125,129387.1094,NA,23903.25977),
"Sample3" = c(18778.68359,43655.79688,NA,57447.08984,113266.1484,44810.26172,26316.6543),
"Sample4" = c(23919.53125,47829.02344,NA,51478.58203,116275.3359,43110.94922,25417.45508),
"Sample5" = c(NA,46677.20313,63389.45313,48722.15234,NA,77135.52344,40265.6875),
"Sample6" = c(NA,68596.22656,56802.60938,44712.64063,NA,47744.17969,33689.62891),
"Sample7" = c(NA,80506.14844,48722.99219,38629.00781,NA,37885,36638.02344))
想要获得 log2 的比率与 rowmean,如下所示:
Gene_Symbol Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 Sample7
1 Gene1 1.303863983 -1.73489640 -0.88562768 -0.53653450 NA NA NA
2 Gene2 -0.009130358 -0.39452056 -0.32703546 -0.19532236 -0.23049058 0.32492052 0.5558903
3 Gene3 0.793942295 -0.67448070 NA NA -0.01364391 -0.17192953 -0.3932840
4 Gene4 0.115606000 0.01225376 0.22648263 0.06822114 -0.01117331 -0.13506843 -0.3460666
5 Gene5 -0.355634714 0.21437397 0.02239683 0.06022518 NA NA NA
6 Gene6 NA NA -0.16205178 -0.21782661 0.62151449 -0.07055606 -0.4042542
7 Gene7 -0.329904867 -0.32851744 -0.18974873 -0.23990523 0.42382615 0.16657972 0.2876169
用基数 R 计算 rowMeans
rowMeanValues <- rowMeans(df[,2:ncol(df)], na.rm = TRUE)
将所有量化值除以 rowMeanValues
df[,2:ncol(df)] <- sweep(df[,2:ncol(df)],
MARGIN = 1, FUN = "/",
STATS = rowMeanValues)
比率的 log2
df[,2:ncol(df)] <- log2(df[,2:ncol(df)])
这给了我上面想要的table。
我如何在 dplyr 中进行这些计算?
在下面尝试过,但它除以列平均值而不是行平均值
df %>% mutate_at(vars(starts_with('Sample')), funs(./mean(., na.rm = TRUE)))
感谢帮助!
亨里克
一个选项是先计算 rowMeans
并将其创建为列,然后在下一步中执行 mutate_at
。在这里,我们使用 base R
中的 rowMeans
,因为它比 rowwise
或其他形式或重塑计算行方式均值
更有效
library(dplyr)
df %>%
mutate(Mean = rowMeans(select(., starts_with('Sample')), na.rm = TRUE)) %>%
mutate_at(vars(starts_with('Sample')), ~ log2(./Mean)) %>%
select(-Mean) # removing the Mean column from the dataset
#Gene_Symbol Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 Sample7
#1 Gene1 1.303863983 -1.73489640 -0.88562768 -0.53653450 NA NA NA
#2 Gene2 -0.009130358 -0.39452056 -0.32703546 -0.19532236 -0.23049058 0.32492052 0.5558903
#3 Gene3 0.793942295 -0.67448070 NA NA -0.01364391 -0.17192953 -0.3932840
#4 Gene4 0.115606000 0.01225376 0.22648263 0.06822114 -0.01117331 -0.13506843 -0.3460666
#5 Gene5 -0.355634714 0.21437397 0.02239683 0.06022518 NA NA NA
#6 Gene6 NA NA -0.16205178 -0.21782661 0.62151449 -0.07055606 -0.4042542
#7 Gene7 -0.329904867 -0.32851744 -0.18974873 -0.23990523 0.42382615 0.16657972 0.2876169
此外,mutate_at
中的 .
是实际的列值,因此采用 .
的 mean
只会按列计算平均值而不是按行计算
我有一个数据框,其中包含不同样本中基因的定量值,我想将每个值除以行平均值。后跟所有值的 log2。 这可以通过 base R 完成,如下所示,但我无法使用管道使其工作。
示例数据框:
df <- data.frame("Gene_Symbol" = c("Gene1","Gene2","Gene3","Gene4","Gene5","Gene6","Gene7"),
"Sample1" = c(85657.97656,54417.78906,110949.3281,53197.45313,87156.80469,NA,23880.2832),
"Sample2" = c(10423.40918,41660.73047,40094.54688,49519.78125,129387.1094,NA,23903.25977),
"Sample3" = c(18778.68359,43655.79688,NA,57447.08984,113266.1484,44810.26172,26316.6543),
"Sample4" = c(23919.53125,47829.02344,NA,51478.58203,116275.3359,43110.94922,25417.45508),
"Sample5" = c(NA,46677.20313,63389.45313,48722.15234,NA,77135.52344,40265.6875),
"Sample6" = c(NA,68596.22656,56802.60938,44712.64063,NA,47744.17969,33689.62891),
"Sample7" = c(NA,80506.14844,48722.99219,38629.00781,NA,37885,36638.02344))
想要获得 log2 的比率与 rowmean,如下所示:
Gene_Symbol Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 Sample7
1 Gene1 1.303863983 -1.73489640 -0.88562768 -0.53653450 NA NA NA
2 Gene2 -0.009130358 -0.39452056 -0.32703546 -0.19532236 -0.23049058 0.32492052 0.5558903
3 Gene3 0.793942295 -0.67448070 NA NA -0.01364391 -0.17192953 -0.3932840
4 Gene4 0.115606000 0.01225376 0.22648263 0.06822114 -0.01117331 -0.13506843 -0.3460666
5 Gene5 -0.355634714 0.21437397 0.02239683 0.06022518 NA NA NA
6 Gene6 NA NA -0.16205178 -0.21782661 0.62151449 -0.07055606 -0.4042542
7 Gene7 -0.329904867 -0.32851744 -0.18974873 -0.23990523 0.42382615 0.16657972 0.2876169
用基数 R 计算 rowMeans
rowMeanValues <- rowMeans(df[,2:ncol(df)], na.rm = TRUE)
将所有量化值除以 rowMeanValues
df[,2:ncol(df)] <- sweep(df[,2:ncol(df)],
MARGIN = 1, FUN = "/",
STATS = rowMeanValues)
比率的 log2
df[,2:ncol(df)] <- log2(df[,2:ncol(df)])
这给了我上面想要的table。 我如何在 dplyr 中进行这些计算?
在下面尝试过,但它除以列平均值而不是行平均值
df %>% mutate_at(vars(starts_with('Sample')), funs(./mean(., na.rm = TRUE)))
感谢帮助! 亨里克
一个选项是先计算 rowMeans
并将其创建为列,然后在下一步中执行 mutate_at
。在这里,我们使用 base R
中的 rowMeans
,因为它比 rowwise
或其他形式或重塑计算行方式均值
library(dplyr)
df %>%
mutate(Mean = rowMeans(select(., starts_with('Sample')), na.rm = TRUE)) %>%
mutate_at(vars(starts_with('Sample')), ~ log2(./Mean)) %>%
select(-Mean) # removing the Mean column from the dataset
#Gene_Symbol Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 Sample7
#1 Gene1 1.303863983 -1.73489640 -0.88562768 -0.53653450 NA NA NA
#2 Gene2 -0.009130358 -0.39452056 -0.32703546 -0.19532236 -0.23049058 0.32492052 0.5558903
#3 Gene3 0.793942295 -0.67448070 NA NA -0.01364391 -0.17192953 -0.3932840
#4 Gene4 0.115606000 0.01225376 0.22648263 0.06822114 -0.01117331 -0.13506843 -0.3460666
#5 Gene5 -0.355634714 0.21437397 0.02239683 0.06022518 NA NA NA
#6 Gene6 NA NA -0.16205178 -0.21782661 0.62151449 -0.07055606 -0.4042542
#7 Gene7 -0.329904867 -0.32851744 -0.18974873 -0.23990523 0.42382615 0.16657972 0.2876169
此外,mutate_at
中的 .
是实际的列值,因此采用 .
的 mean
只会按列计算平均值而不是按行计算