任何 sklearn 模块 return 是否可以在 k 折交叉验证中针对负值 class 平均精度和召回分数?

Can any sklearn module return average precision and recall scores for negative class in k-fold cross validation?

我正在尝试在 10 折交叉验证中获得正负 class 的准确率和召回率的平均值。我的模型是二进制 classifier.

我 运行 下面的代码,不幸的是它只 return 平均精确率和召回率 class。我如何告诉算法 return 负 class 的平均精度和召回分数?

from sklearn.metrics import make_scorer, accuracy_score, precision_score, recall_score, f1_score
from sklearn.model_selection import cross_validate

scoring = {'accuracy' : make_scorer(accuracy_score), 
           'precision' : make_scorer(precision_score),
           'recall' : make_scorer(recall_score), 
           'f1_score' : make_scorer(f1_score)}

results = cross_validate(model_unbalanced_data_10_times_weight, X, Y, cv=10, scoring=scoring)

np.mean(results['test_precision'])
np.mean(results['test_recall'])

我还尝试使用命令“classification_report(y_test, predictions)”打印 classification 报告,结果如下面的屏幕截图所示。但是,我相信 classification 报告中的 precision/recall 分数仅基于 1 运行 而不是超过 10 倍的平均值(如果我错了请纠正我)。

根据我们上面的讨论,我确实认为计算每个 cv 折叠的预测并计算 cross_validation_report 应该是正确的方法。结果现在应该考虑 cv 折叠的数量:

>>> from sklearn.metrics import classification_report
>>> from sklearn.datasets import load_iris
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.model_selection import cross_val_predict
>>> 
>>> iris = load_iris()
>>> 
>>> rf_clf = RandomForestClassifier()
>>> 
>>> preds = cross_val_predict(estimator=rf_clf,
...                           X=iris["data"],
...                           y=iris["target"],
...                           cv=15)
>>> 
>>> print(classification_report(iris["target"], preds))
              precision    recall  f1-score   support

           0       1.00      1.00      1.00        50
           1       0.92      0.94      0.93        50
           2       0.94      0.92      0.93        50

    accuracy                           0.95       150
   macro avg       0.95      0.95      0.95       150
weighted avg       0.95      0.95      0.95       150