在现代 OpenGL 中画一条线

Drawing a line in modern OpenGL

我只想在屏幕上画一条线。我正在使用 OpenGl 4.6。我发现的所有教程都使用 glVertexPointer,据我所知,它已被弃用。

我知道如何使用缓冲区绘制三角形,所以我尝试使用一条线。它没有用,只是显示黑屏。 (我正在使用 GLFW 和 GLEW,我正在使用我已经在三角形上测试过的顶点+片段着色器)

// Make line
float line[] = {
    0.0, 0.0,
    1.0, 1.0
};

unsigned int buffer; // The ID, kind of a pointer for VRAM
glGenBuffers(1, &buffer); // Allocate memory for the triangle
glBindBuffer(GL_ARRAY_BUFFER, buffer); // Set the buffer as the active array
glBufferData(GL_ARRAY_BUFFER, 2 * sizeof(float), line, GL_STATIC_DRAW); // Fill the buffer with data
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), 0); // Specify how the buffer is converted to vertices
glEnableVertexAttribArray(0); // Enable the vertex array

// Loop until the user closes the window
while (!glfwWindowShouldClose(window))
{
    // Clear previous
    glClear(GL_COLOR_BUFFER_BIT);

    // Draw the line
    glDrawArrays(GL_LINES, 0, 2);

    // Swap front and back buffers
    glfwSwapBuffers(window);

    // Poll for and process events
    glfwPollEvents();
}

我的方向是正确的,还是完全不同的方法是当前的最佳实践?

如果是,我该如何修复我的代码?

问题是对 glBufferData 的调用。第二个参数是以字节为单位的缓冲区大小。由于顶点数组由 2 个坐标和 2 个分量组成,因此缓冲区的大小是 4 * sizeof(float) 而不是 2 * sizeof(float):

glBufferData(GL_ARRAY_BUFFER, 2 * sizeof(float), line, GL_STATIC_DRAW);

glBufferData(GL_ARRAY_BUFFER, 4 * sizeof(float), line, GL_STATIC_DRAW);

但请注意,这仍然不是“现代”OpenGL。如果你想使用核心配置文件OpenGL Context, then you have to use a Shader program and a Vertex Array Object


但是,如果您使用的是 核心 OpenGL context and the forward compatibility bit is set, the width of a line (glLineWidth),则不能大于 1.0。
参见 OpenGL 4.6 API Core Profile Specification - E.2 Deprecated and Removed Features

Wide lines - LineWidth values greater than 1.0 will generate an INVALID_VALUE error.

你必须找到不同的方法。

我建议使用 Shader, which generates triangle primitives 沿线带(甚至线环)。
任务是生成粗线带,尽可能减少 CPU 和 GPU 开销。这意味着要避免在 CPU 和几何着色器(或曲面细分着色器)上计算多边形。

直线的每段由一个四边形组成,分别由 2 个三角形基元和 6 个顶点表示。

0        2   5
 +-------+  +
 |     /  / |
 |   /  /   |
 | /  /     |
 +  +-------+
1   3        4

在线段之间必须找到斜接,并且必须将四边形切割成斜接。

+----------------+
|              / |
| segment 1  /   |
|          /     |
+--------+       |
         | segment 2
         |       |
         |       |
         +-------+

用线条的角点创建一个数组。第一个点和最后一个点定义线条的起点和终点切线。所以需要在线前加1点,在线后加1点。当然这很容易,通过比较索引为 0 和数组的长度来识别数组的第一个和最后一个元素,但是我们不想在着色器中做任何额外的检查。
如果必须绘制线循环,则必须将最后一个点添加到数组头部,将第一个点添加到数组尾部。

点数组存储到一个Shader Storage Buffer Object. We use the benefit, that the last variable of the SSBO can be an array of variable size. In older versions of OpenGL (or OpenGL ES) a Uniform Buffer Object or even a Texture可以使用

着色器不需要任何顶点坐标或属性。我们只需要知道线段的索引即可。坐标存储在缓冲区中。为了找到索引,我们使用当前正在处理的顶点的索引 (gl_VertexID)。
要绘制具有 N 线段的线条,需要处理 6*(N-1) 个顶点。

我们必须创建一个“空”Vertex Array Object(没有任何顶点属性规范):

glGenVertexArrays(1, &vao);
glBindVertexArray(vao);

并绘制 2*(N-1) 个三角形(6*(N-1) 个顶点):

glDrawArrays(GL_TRIANGLES, 0, 6*(N-1));

SSBO中的坐标数组,使用数据类型vec4(请相信我,你不会想使用):

layout(std430, binding = 0) buffer TVertex
{
   vec4 vertex[];
};

计算顶点坐标所属的线段的索引和2个三角形中点的索引:

int line_i = gl_VertexID / 6;
int tri_i  = gl_VertexID % 6;

由于我们画的是N-1条线段,但是数组中的元素个数是N+2,所以可以访问vertex[line_t]vertex[line_t+3]的元素在顶点着色器中处理的每个顶点。
vertex[line_t+1]vertex[line_t+2] 分别是线段的起点坐标和终点坐标。计算斜接需要 vertex[line_t]vertex[line_t+3]

线的粗细应该以像素为单位设置(uniform float u_thickness)。坐标必须从模型 space 转换为 window space。为此,必须知道视口的分辨率 (uniform vec2 u_resolution)。不要忘记 perspective divide。直线的绘制甚至可以在透视投影下工作。

vec4 va[4];
for (int i=0; i<4; ++i)
{
    va[i] = u_mvp * vertex[line_i+i];
    va[i].xyz /= va[i].w;
    va[i].xy = (va[i].xy + 1.0) * 0.5 * u_resolution;
}

即使前导点或后继点等于线段的起点或终点,斜接计算也有效。在这种情况下,线的末端垂直于其切线被切割:

vec2 v_line   = normalize(va[2].xy - va[1].xy);
vec2 nv_line  = vec2(-v_line.y, v_line.x);
vec2 v_pred   = normalize(va[1].xy - va[0].xy);
vec2 v_succ   = normalize(va[3].xy - va[2].xy);
vec2 v_miter1 = normalize(nv_line + vec2(-v_pred.y, v_pred.x));
vec2 v_miter2 = normalize(nv_line + vec2(-v_succ.y, v_succ.x));

在最终的顶点着色器中,我们只需要根据 tri_i 计算 v_miter1v_miter2。有了斜接,线段的法向量和线的粗细(u_thickness),可以计算出顶点坐标:

vec4 pos;
if (tri_i == 0 || tri_i == 1 || tri_i == 3)
{
    vec2 v_pred  = normalize(va[1].xy - va[0].xy);
    vec2 v_miter = normalize(nv_line + vec2(-v_pred.y, v_pred.x));

    pos = va[1];
    pos.xy += v_miter * u_thickness * (tri_i == 1 ? -0.5 : 0.5) / dot(v_miter, nv_line);
}
else
{
    vec2 v_succ  = normalize(va[3].xy - va[2].xy);
    vec2 v_miter = normalize(nv_line + vec2(-v_succ.y, v_succ.x));

    pos = va[2];
    pos.xy += v_miter * u_thickness * (tri_i == 5 ? 0.5 : -0.5) / dot(v_miter, nv_line);
}

最后 window 坐标必须转换回剪辑 space 坐标。从 window space 转换为标准化设备 space。透视鸿沟必须扭转:

pos.xy = pos.xy / u_resolution * 2.0 - 1.0;
pos.xyz *= pos.w;

使用 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)glPolygonMode(GL_FRONT_AND_BACK, GL_LINE) 创建的多边形:

使用 GLFW API for creating a window, GLEW for loading OpenGL and GLM -OpenGL Mathematics 进行数学运算的演示程序。 (我没有提供函数 CreateProgram 的代码,它只是创建一个程序对象,来自顶点着色器和片段着色器源代码):

#include <vector>
#include <string>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <gl/gl_glew.h>
#include <GLFW/glfw3.h>

std::string vertShader = R"(
#version 460

layout(std430, binding = 0) buffer TVertex
{
   vec4 vertex[]; 
};

uniform mat4  u_mvp;
uniform vec2  u_resolution;
uniform float u_thickness;

void main()
{
    int line_i = gl_VertexID / 6;
    int tri_i  = gl_VertexID % 6;

    vec4 va[4];
    for (int i=0; i<4; ++i)
    {
        va[i] = u_mvp * vertex[line_i+i];
        va[i].xyz /= va[i].w;
        va[i].xy = (va[i].xy + 1.0) * 0.5 * u_resolution;
    }

    vec2 v_line  = normalize(va[2].xy - va[1].xy);
    vec2 nv_line = vec2(-v_line.y, v_line.x);
    
    vec4 pos;
    if (tri_i == 0 || tri_i == 1 || tri_i == 3)
    {
        vec2 v_pred  = normalize(va[1].xy - va[0].xy);
        vec2 v_miter = normalize(nv_line + vec2(-v_pred.y, v_pred.x));

        pos = va[1];
        pos.xy += v_miter * u_thickness * (tri_i == 1 ? -0.5 : 0.5) / dot(v_miter, nv_line);
    }
    else
    {
        vec2 v_succ  = normalize(va[3].xy - va[2].xy);
        vec2 v_miter = normalize(nv_line + vec2(-v_succ.y, v_succ.x));

        pos = va[2];
        pos.xy += v_miter * u_thickness * (tri_i == 5 ? 0.5 : -0.5) / dot(v_miter, nv_line);
    }

    pos.xy = pos.xy / u_resolution * 2.0 - 1.0;
    pos.xyz *= pos.w;
    gl_Position = pos;
}
)";

std::string fragShader = R"(
#version 460

out vec4 fragColor;

void main()
{
    fragColor = vec4(1.0);
}
)";


// main

GLuint CreateSSBO(std::vector<glm::vec4> &varray)
{
    GLuint ssbo;
    glGenBuffers(1, &ssbo);
    glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo );
    glBufferData(GL_SHADER_STORAGE_BUFFER, varray.size()*sizeof(*varray.data()), varray.data(), GL_STATIC_DRAW); 
    return ssbo;
}

int main(void)
{
    if ( glfwInit() == 0 )
        throw std::runtime_error( "error initializing glfw" );
    GLFWwindow *window = glfwCreateWindow( 800, 600, "GLFW OGL window", nullptr, nullptr );
    if (window == nullptr)
    {
        glfwTerminate();
        throw std::runtime_error("error initializing window"); 
    }
    glfwMakeContextCurrent(window);
    if (glewInit() != GLEW_OK)
        throw std::runtime_error("error initializing glew");

    OpenGL::CContext::TDebugLevel debug_level = OpenGL::CContext::TDebugLevel::all;
    OpenGL::CContext context;
    context.Init( debug_level );

    GLuint program  = OpenGL::CreateProgram(vertShader, fragShader);
    GLint  loc_mvp  = glGetUniformLocation(program, "u_mvp");
    GLint  loc_res  = glGetUniformLocation(program, "u_resolution");
    GLint  loc_thi  = glGetUniformLocation(program, "u_thickness");

    glUseProgram(program);
    glUniform1f(loc_thi, 20.0);

    GLushort pattern = 0x18ff;
    GLfloat  factor  = 2.0f;

    std::vector<glm::vec4> varray;
    varray.emplace_back(glm::vec4(0.0f, -1.0f, 0.0f, 1.0f));
    varray.emplace_back(glm::vec4(1.0f, -1.0f, 0.0f, 1.0f));
    for (int u=0; u <= 90; u += 10)
    {
        double a = u*M_PI/180.0;
        double c = cos(a), s = sin(a);
        varray.emplace_back(glm::vec4((float)c, (float)s, 0.0f, 1.0f));
    }
    varray.emplace_back(glm::vec4(-1.0f, 1.0f, 0.0f, 1.0f));
    for (int u = 90; u >= 0; u -= 10)
    {
        double a = u * M_PI / 180.0;
        double c = cos(a), s = sin(a);
        varray.emplace_back(glm::vec4((float)c-1.0f, (float)s-1.0f, 0.0f, 1.0f));
    }
    varray.emplace_back(glm::vec4(1.0f, -1.0f, 0.0f, 1.0f));
    varray.emplace_back(glm::vec4(1.0f, 0.0f, 0.0f, 1.0f));
    GLuint ssbo = CreateSSBO(varray);
    
    GLuint vao;
    glGenVertexArrays(1, &vao);
    glBindVertexArray(vao);
    glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, ssbo);
    GLsizei N = (GLsizei)varray.size() - 2;

    glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

    glm::mat4(project);
    int vpSize[2]{0, 0};
    while (!glfwWindowShouldClose(window))
    {
        int w, h;
        glfwGetFramebufferSize(window, &w, &h);
        if (w != vpSize[0] ||  h != vpSize[1])
        {
            vpSize[0] = w; vpSize[1] = h;
            glViewport(0, 0, vpSize[0], vpSize[1]);
            float aspect = (float)w/(float)h;
            project = glm::ortho(-aspect, aspect, -1.0f, 1.0f, -10.0f, 10.0f);
            glUniform2f(loc_res, (float)w, (float)h);
        }
             
        glClear(GL_COLOR_BUFFER_BIT);

        glm::mat4 modelview1( 1.0f );
        modelview1 = glm::translate(modelview1, glm::vec3(-0.6f, 0.0f, 0.0f) );
        modelview1 = glm::scale(modelview1, glm::vec3(0.5f, 0.5f, 1.0f) );
        glm::mat4 mvp1 = project * modelview1;
        
        glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
        glUniformMatrix4fv(loc_mvp, 1, GL_FALSE, glm::value_ptr(mvp1));
        glDrawArrays(GL_TRIANGLES, 0, 6*(N-1));

        glm::mat4 modelview2( 1.0f );
        modelview2 = glm::translate(modelview2, glm::vec3(0.6f, 0.0f, 0.0f) );
        modelview2 = glm::scale(modelview2, glm::vec3(0.5f, 0.5f, 1.0f) );
        glm::mat4 mvp2 = project * modelview2;
        
        glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
        glUniformMatrix4fv(loc_mvp, 1, GL_FALSE, glm::value_ptr(mvp2));
        glDrawArrays(GL_TRIANGLES, 0, 6*(N-1));
        
        glfwSwapBuffers(window);
        glfwPollEvents();
    }
    glfwTerminate();

    return 0;
}