Scikit-learn:用于集群评估的 ARI 分数
Scikit-learn: ARI score for cluster evaluation
我正在计算 evaluating the cluster performance 的调整后兰德指数得分。假设,真实的集群和预测的集群如下所示。格式 {i, "x"}
表示元素 "x"
在 ith
簇中。
>>> labels_true = [{0,"a"}, {0,"b"}, {0,"c"}, {1,"d"}, {1,"e"}, {1,"f"}]
>>> labels_pred = [{0,"a"}, {0,"b"}, {1,"c"}, {1,"d"}, {2,"e"}, {2,"f"}]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
ARI 分数即将达到 1.0,但似乎不应该是 1.0,因为预测的集群与真实的集群不同。
我想知道这是否是计算 ARI 分数的有效方法。
您只需将标签放入 ARI 分数函数中即可:
labels_true = [0, 0, 0, 1, 1, 1]
labels_pred = [0, 0, 1, 1, 2, 2]
metrics.adjusted_rand_score(labels_true, labels_pred)
我正在计算 evaluating the cluster performance 的调整后兰德指数得分。假设,真实的集群和预测的集群如下所示。格式 {i, "x"}
表示元素 "x"
在 ith
簇中。
>>> labels_true = [{0,"a"}, {0,"b"}, {0,"c"}, {1,"d"}, {1,"e"}, {1,"f"}]
>>> labels_pred = [{0,"a"}, {0,"b"}, {1,"c"}, {1,"d"}, {2,"e"}, {2,"f"}]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
ARI 分数即将达到 1.0,但似乎不应该是 1.0,因为预测的集群与真实的集群不同。
我想知道这是否是计算 ARI 分数的有效方法。
您只需将标签放入 ARI 分数函数中即可:
labels_true = [0, 0, 0, 1, 1, 1]
labels_pred = [0, 0, 1, 1, 2, 2]
metrics.adjusted_rand_score(labels_true, labels_pred)