预训练向量未加载 spacy

pretrained vectors not loading in spacy

我正在使用 spacy.blank("en") 模型从头开始训练自定义 NER 模型。我向其中添加自定义词向量。向量加载如下:

from gensim.models.word2vec import Word2Vec
from gensim.models import KeyedVectors
med_vec = KeyedVectors.load_word2vec_format('./wikipedia-pubmed-and-PMC-w2v.bin', binary=True, limit = 300000)

然后我将它添加到此代码片段中的空白模型中:

def main(model=None, n_iter=3, output_dir=None):
    """Set up the pipeline and entity recognizer, and train the new entity."""
    random.seed(0)
    if model is not None:
        nlp = spacy.load(model) # load existing spaCy model
        print("Loaded model '%s'" % model)
    else:
        nlp = spacy.blank("en")  # create blank Language class
        nlp.vocab.reset_vectors(width=200)
        for idx in range(len(med_vec.index2word)):
            word = med_vec.index2word[idx]
            vector = med_vec.vectors[idx]
            nlp.vocab.set_vector(word, vector)
        for key, vector in nlp.vocab.vectors.items():
            nlp.vocab.strings.add(nlp.vocab.strings[key])
        nlp.vocab.vectors.name = 'spacy_pretrained_vectors'
        print("Created blank 'en' model")
......Code for training the ner

然后我保存这个模型。

当我尝试加载模型时, nlp = spacy.load("./NDLA/vectorModel0")

我收到以下错误:


`~\AppData\Local\Continuum\anaconda3\lib\site-packages\thinc\neural\_classes\static_vectors.py in __init__(self, lang, nO, drop_factor, column)
     47         if self.nM == 0:
     48             raise ValueError(
---> 49                 "Cannot create vectors table with dimension 0.\n"
     50                 "If you're using pre-trained vectors, are the vectors loaded?"
     51             )

ValueError: Cannot create vectors table with dimension 0.
If you're using pre-trained vectors, are the vectors loaded?

我也收到这个警告:

 UserWarning: [W019] Changing vectors name from spacy_pretrained_vectors to spacy_pretrained_vectors_336876, to avoid clash with previously loaded vectors. See Issue #3853.
  "__main__", mod_spec)

模型中的 vocab 目录有一个大小为 270 MB 的矢量文件。所以我知道它不是空的......是什么导致了这个错误?

您可以尝试一次传递所有向量,而不是使用 for 循环。

nlp.vocab.vectors = spacy.vocab.Vectors(data=med_vec.syn0, keys=med_vec.vocab.keys())

所以你的 else 语句会变成这样:

else:
    nlp = spacy.blank("en")  # create blank Language class
    nlp.vocab.reset_vectors(width=200)
    nlp.vocab.vectors = spacy.vocab.Vectors(data=med_vec.syn0, keys=med_vec.vocab.keys()) 
    nlp.vocab.vectors.name = 'spacy_pretrained_vectors'
    print("Created blank 'en' model")