如何在 Tensorflow 中显示数据集对象中的 class 分布

How to show the class distribution in Dataset object in Tensorflow

我正在使用我自己的图像进行多class class化任务。

filenames = [] # a list of filenames
labels = [] # a list of labels corresponding to the filenames
full_ds = tf.data.Dataset.from_tensor_slices((filenames, labels))

这个完整的数据集将被打乱并分成训练、有效和测试数据集

full_ds_size = len(filenames)
full_ds = full_ds.shuffle(buffer_size=full_ds_size*2, seed=128) # seed is used for reproducibility

train_ds_size = int(0.64 * full_ds_size)
valid_ds_size = int(0.16 * full_ds_size)

train_ds = full_ds.take(train_ds_size)
remaining = full_ds.skip(train_ds_size)  
valid_ds = remaining.take(valid_ds_size)
test_ds = remaining.skip(valid_ds_size)

现在我很难理解每个 class 在 train_ds、valid_ds 和 test_ds 中是如何分布的。一个丑陋的解决方案是迭代数据集中的所有元素并计算每个 class 的出现次数。有没有更好的办法解决?

我丑陋的解决方案:

def get_class_distribution(dataset):
    class_distribution = {}
    for element in dataset.as_numpy_iterator():
        label = element[1]

        if label in class_distribution.keys():
            class_distribution[label] += 1
        else:
            class_distribution[label] = 0

    # sort dict by key
    class_distribution = collections.OrderedDict(sorted(class_distribution.items())) 
    return class_distribution


train_ds_class_dist = get_class_distribution(train_ds)
valid_ds_class_dist = get_class_distribution(valid_ds)
test_ds_class_dist = get_class_distribution(test_ds)

print(train_ds_class_dist)
print(valid_ds_class_dist)
print(test_ds_class_dist)

以下答案假定:

  • 有五个类。
  • 标签是 0 到 4 之间的整数。

可以根据您的需要进行修改。

定义一个计数器函数:

def count_class(counts, batch, num_classes=5):
    labels = batch['label']
    for i in range(num_classes):
        cc = tf.cast(labels == i, tf.int32)
        counts[i] += tf.reduce_sum(cc)
    return counts

使用reduce操作:

initial_state = dict((i, 0) for i in range(5))
counts = train_ds.reduce(initial_state=initial_state,
                         reduce_func=count_class)

print([(k, v.numpy()) for k, v in counts.items()])

受 user650654 的回答启发的解决方案,仅使用 TensorFlow 基元(使用 tf.unique_with_counts 而不是 for 循环):

理论上,这应该具有更好的性能,并且可以更好地扩展到大型数据集、批次或 class 计数。

num_classes = 5

@tf.function
def count_class(counts, batch):
    y, _, c = tf.unique_with_counts(batch[1])
    return tf.tensor_scatter_nd_add(counts, tf.expand_dims(y, axis=1), c)

counts = train_ds.reduce(
    initial_state=tf.zeros(num_classes, tf.int32),
    reduce_func=count_class)

print(counts.numpy())

使用 numpy 的类似且更简单的版本实际上对我的简单 use-case:

有更好的性能
count = np.zeros(num_classes, dtype=np.int32)
for images, labels in df_train:
    y, _, c = tf.unique_with_counts(labels)
    count[y.numpy()] += c.numpy()
print(count)