在拟合和预测模型之前如何将 logits 传递给 sigmoid_cross_entropy_with_logits?

How can I pass logits to sigmoid_cross_entropy_with_logits before I fit and predict model?

由于我需要训练一个有多个标签的模型,所以我需要使用loss function tf.nn.sigmoid_cross_entropy_with_logits。这个函数有两个参数:logitsloss.

参数logitsis是预测y的值吗?在编译模型之前如何传递这个值?我无法在编译和拟合模型之前预测 y,对吗?

这是我的代码:

import tensorflow as tf
from tensorflow import keras

model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]), 
                            keras.layers.Dense(30, activation='relu'),
                            keras.layers.Dense(50, activation='tanh'),
                            keras.layers.Dense(100, activation='relu'),
                            keras.layers.Dense(8)])

model.compile(optimizer='rmsprop', 
              loss=tf.nn.sigmoid_cross_entropy_with_logits(logits=y_pred), labels=y),   # <---How to figure out y_pred here?
              metrics=['accuracy'])
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x)  # <--- Now I got y_pred after compile, fit and predict

我正在使用 tensorflow v2.1.0

这些参数(labelslogits)被传递给 Keras 实现中的损失函数。要使您的代码正常工作,请执行以下操作:

import tensorflow as tf
from tensorflow import keras


def loss_fn(y_true, y_pred):
    return tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=y_pred)

model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]), 
                          keras.layers.Dense(30, activation='relu'),
                          keras.layers.Dense(50, activation='tanh'),
                          keras.layers.Dense(100, activation='relu'),
                          keras.layers.Dense(8)])

model.compile(optimizer='rmsprop', 
              loss=loss_fn,
              metrics=['accuracy'])
x = np.random.normal(0, 1, (64, 100))
y = np.random.randint(0, 2, (64, 8)).astype('float32')
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x)

不过,建议的方法是改用 Keras 的损失实现。在你的情况下它将是:

model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]), 
                          keras.layers.Dense(30, activation='relu'),
                          keras.layers.Dense(50, activation='tanh'),
                          keras.layers.Dense(100, activation='relu'),
                          keras.layers.Dense(8)])

model.compile(optimizer='rmsprop', 
              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
              metrics=['accuracy'])
x = np.random.normal(0, 1, (64, 100))
y = np.random.randint(0, 2, (64, 8)).astype('float32')
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x)