在拟合和预测模型之前如何将 logits 传递给 sigmoid_cross_entropy_with_logits?
How can I pass logits to sigmoid_cross_entropy_with_logits before I fit and predict model?
由于我需要训练一个有多个标签的模型,所以我需要使用loss function tf.nn.sigmoid_cross_entropy_with_logits
。这个函数有两个参数:logits
和 loss
.
参数logitsis
是预测y的值吗?在编译模型之前如何传递这个值?我无法在编译和拟合模型之前预测 y,对吗?
这是我的代码:
import tensorflow as tf
from tensorflow import keras
model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]),
keras.layers.Dense(30, activation='relu'),
keras.layers.Dense(50, activation='tanh'),
keras.layers.Dense(100, activation='relu'),
keras.layers.Dense(8)])
model.compile(optimizer='rmsprop',
loss=tf.nn.sigmoid_cross_entropy_with_logits(logits=y_pred), labels=y), # <---How to figure out y_pred here?
metrics=['accuracy'])
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x) # <--- Now I got y_pred after compile, fit and predict
我正在使用 tensorflow v2.1.0
这些参数(labels
和 logits
)被传递给 Keras 实现中的损失函数。要使您的代码正常工作,请执行以下操作:
import tensorflow as tf
from tensorflow import keras
def loss_fn(y_true, y_pred):
return tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=y_pred)
model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]),
keras.layers.Dense(30, activation='relu'),
keras.layers.Dense(50, activation='tanh'),
keras.layers.Dense(100, activation='relu'),
keras.layers.Dense(8)])
model.compile(optimizer='rmsprop',
loss=loss_fn,
metrics=['accuracy'])
x = np.random.normal(0, 1, (64, 100))
y = np.random.randint(0, 2, (64, 8)).astype('float32')
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x)
不过,建议的方法是改用 Keras 的损失实现。在你的情况下它将是:
model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]),
keras.layers.Dense(30, activation='relu'),
keras.layers.Dense(50, activation='tanh'),
keras.layers.Dense(100, activation='relu'),
keras.layers.Dense(8)])
model.compile(optimizer='rmsprop',
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=['accuracy'])
x = np.random.normal(0, 1, (64, 100))
y = np.random.randint(0, 2, (64, 8)).astype('float32')
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x)
由于我需要训练一个有多个标签的模型,所以我需要使用loss function tf.nn.sigmoid_cross_entropy_with_logits
。这个函数有两个参数:logits
和 loss
.
参数logitsis
是预测y的值吗?在编译模型之前如何传递这个值?我无法在编译和拟合模型之前预测 y,对吗?
这是我的代码:
import tensorflow as tf
from tensorflow import keras
model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]),
keras.layers.Dense(30, activation='relu'),
keras.layers.Dense(50, activation='tanh'),
keras.layers.Dense(100, activation='relu'),
keras.layers.Dense(8)])
model.compile(optimizer='rmsprop',
loss=tf.nn.sigmoid_cross_entropy_with_logits(logits=y_pred), labels=y), # <---How to figure out y_pred here?
metrics=['accuracy'])
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x) # <--- Now I got y_pred after compile, fit and predict
我正在使用 tensorflow v2.1.0
这些参数(labels
和 logits
)被传递给 Keras 实现中的损失函数。要使您的代码正常工作,请执行以下操作:
import tensorflow as tf
from tensorflow import keras
def loss_fn(y_true, y_pred):
return tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=y_pred)
model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]),
keras.layers.Dense(30, activation='relu'),
keras.layers.Dense(50, activation='tanh'),
keras.layers.Dense(100, activation='relu'),
keras.layers.Dense(8)])
model.compile(optimizer='rmsprop',
loss=loss_fn,
metrics=['accuracy'])
x = np.random.normal(0, 1, (64, 100))
y = np.random.randint(0, 2, (64, 8)).astype('float32')
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x)
不过,建议的方法是改用 Keras 的损失实现。在你的情况下它将是:
model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]),
keras.layers.Dense(30, activation='relu'),
keras.layers.Dense(50, activation='tanh'),
keras.layers.Dense(100, activation='relu'),
keras.layers.Dense(8)])
model.compile(optimizer='rmsprop',
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=['accuracy'])
x = np.random.normal(0, 1, (64, 100))
y = np.random.randint(0, 2, (64, 8)).astype('float32')
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x)