如何对第一列中的稀疏矩阵行求和,并将其他列归零,与原始矩阵的维度相同?

How to sum a sparse matrix rows in the first column, and zero the other colums, with the same dimensions of the original matrix?

我有一个稀疏矩阵 B,我想通过对第一列中的所有行求和,然后将第一列除以“2”,并使其他列为零来从 B 得到稀疏矩阵 A。

from numpy import array
from scipy import csr_matrix

row = array([0,0,1,2,2,2])
col = array([0,2,2,0,1,2])
data = array([1,2,3,4,5,6])

B = csr_matrix( (data,(row,col)), shape=(3,3) )

A = B.copy()

A = A.sum(axis=1)/2
# A shape becomes 1 x 3 instead of 3 x 3 here!

我认为可以通过多种方式解决这个问题。你的没问题。

In [275]: from scipy.sparse import csr_matrix 
     ...:  
     ...: row = np.array([0,0,1,2,2,2]) 
     ...: col = np.array([0,2,2,0,1,2]) 
     ...: data = np.array([1,2,3,4,5,6.])    # make float 
     ...:  
     ...: B = csr_matrix( (data,(row,col)), shape=(3,3) )                                              
In [276]: A = B.copy()                                                                                 
In [277]: A                                                                                            
Out[277]: 
<3x3 sparse matrix of type '<class 'numpy.float64'>'
    with 6 stored elements in Compressed Sparse Row format>

作业有效:

In [278]: A[:,0]  = A.sum(axis=1)/2                                                                    
/usr/local/lib/python3.6/dist-packages/scipy/sparse/_index.py:126: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient.
  self._set_arrayXarray(i, j, x)
In [279]: A[:,1:] = 0                                                                                  
/usr/local/lib/python3.6/dist-packages/scipy/sparse/_index.py:126: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient.
  self._set_arrayXarray(i, j, x)
In [280]: A                                                                                            
Out[280]: 
<3x3 sparse matrix of type '<class 'numpy.float64'>'
    with 9 stored elements in Compressed Sparse Row format>

In [283]: A.eliminate_zeros()                                                                          
In [284]: A                                                                                            
Out[284]: 
<3x3 sparse matrix of type '<class 'numpy.float64'>'
    with 3 stored elements in Compressed Sparse Row format>
In [285]: A.A                                                                                          
Out[285]: 
array([[1.5, 0. , 0. ],
       [1.5, 0. , 0. ],
       [7.5, 0. , 0. ]])

效率警告主要是为了阻止迭代或重复赋值。我觉得像这样的一次性动作可以忽略不计。

或者如果我们从全零开始 A:

In [286]: A = csr_matrix(np.zeros(B.shape))   # may be better method                                                         
In [287]: A[:,0]  = B.sum(axis=1)/2                                                                    
/usr/local/lib/python3.6/dist-packages/scipy/sparse/_index.py:126: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient.
  self._set_arrayXarray(i, j, x)
In [288]: A                                                                                            
Out[288]: 
<3x3 sparse matrix of type '<class 'numpy.float64'>'
    with 3 stored elements in Compressed Sparse Row format>

或者,列和矩阵可用于直接构造 A,使用与用于定义 B:

相同的输入样式
In [289]: A1  = B.sum(axis=1)/2                                                                        
In [290]: A1                                                                                           
Out[290]: 
matrix([[1.5],
        [1.5],
        [7.5]])
In [296]: row = np.arange(3)                                                                           
In [297]: col = np.zeros(3,int)                                                                        
In [298]: data = A1.A1                                                                                 
In [299]: A = csr_matrix((data, (row, col)), shape=(3,3))                                              
In [301]: A                                                                                            
Out[301]: 
<3x3 sparse matrix of type '<class 'numpy.float64'>'
    with 3 stored elements in Compressed Sparse Row format>
In [302]: A.A                                                                                          
Out[302]: 
array([[1.5, 0. , 0. ],
       [1.5, 0. , 0. ],
       [7.5, 0. , 0. ]])

我不知道哪种方法最快。您的 sparse.hstack 看起来不错,但在幕后,hstack 正在从 coo 格式构建 row,col,data 数组,并制作一个新的 coo_matrix。虽然它很可靠,但并不是特别精简。

我演示了如何直接加载一个稀疏数组

row = np.array([0,0,1,2,2,2])
col = np.array([0,2,2,0,1,2])
data = np.array([1,2,3,4,5,6])

B = csr_matrix( (data,(row,col)), shape=(3,3) )

sparseMatrix = csr_matrix((3, 3), 
                      dtype = np.int).toarray()

my_tuple=list(zip(row,col))
index=0
for item in my_tuple:
    sparseMatrix[item[0],item[1]]=data[index]
    index+=1


print(sparseMatrix.sum(axis=1)/2)
print((B.sum(axis=1)/2).flatten())

输出:

[1.5 1.5 7.5]
[[1.5 1.5 7.5]]