我的二阶导数非齐次函数出了什么问题?

What did wrong with my second derivative nonhomogeneous function?

我正在尝试为微分方程编写一个函数

y'' + y = bcos(omega *t)

这是我的代码

   library(deSolve)
   yini <- c(y1 = 2, y2 = 0)
   nonvdp1 <- function(t, y, parms) {
      b <- parms['b']
      omega <- parms['omega']
      dy1dt <- y[2]
      dy2dt <- b * cos(omega * t) - y[1]
      list(c(dy1dt, dy2dt))
   }
   output <- as.data.frame(ode(y = yini, func = nonvdp1, times = (0, 30, 0.1), parms = c(2, 2)))

但是,解出来的结果不太对

   head(nonvdp1snl)
   time y1 y2
   1    0  2  0
   2    1 NA NA
   3    2 NA NA
   4    3 NA NA
   5    4 NA NA
   6    5 NA NA

根据初始条件和我选择的参数,解是

y = (8/3)cos(t) - (2/3)cos(2t)

我的代码做错了什么?

您的代码有几个问题,忘记 seq 时间步长和缺少参数名称。与以下比较:

library(deSolve)
yini <- c(y1 = 2, y2 = 0)
nonvdp1 <- function(t, y, parms) {
  b     <- parms['b']
  omega <- parms['omega']
  dy1dt <- y[2]
  dy2dt <- b * cos(omega * t) - y[1]
  list(c(dy1dt, dy2dt))
}

output <- ode(y = yini, func = nonvdp1, times = seq(0, 30, 0.1), 
  parms = c(b = 2, omega = 2))

output

plot(output)

如果删除 as.data.frame(),则可以使用内置绘图函数 plot.deSolve