如何将情感分析结果(dfm)与 Quanteda 中的原始 readtext 对象合并?

How to merge sentiment analysis results (dfm) with original readtext object in Quanteda?

我一直在使用 Quanteda 的基本 tokens_lookup 功能和 Young Soroka Sentiment Dictionary 来计算政客推文中正面和负面词语的数量。

获得结果后,有没有一种方法可以将这些列添加回具有各种 docvar 的原始 readtext 对象?

head(dat)
readtext object consisting of 6 documents and 11 docvars.
# Description: df[,13] [6 × 13]
  doc_id   text       date      username   to      replies retweets favorites geo   mentions   hashtags        id permalink               
* <chr>    <chr>      <chr>     <chr>      <chr>     <int>    <int>     <int> <lgl> <chr>      <chr>        <dbl> <chr>                   
1 trump.c… "\"Sleepy… 2020-05-… realDonal… MZHemi…    5415    13062     39680 NA    @AjitPaiF… ""       1.84e-224 https://twitter.com/rea…
2 trump.c… "\"He got… 2020-05-… realDonal… mikand…   20406    39081    111370 NA    ""         ""       1.84e-224 https://twitter.com/rea…
3 trump.c… "\"Thank … 2020-05-… realDonal… mikand…    5733    17293     66992 NA    ""         ""       1.84e-224 https://twitter.com/rea…
4 trump.c… "\".@CBS … 2020-05-… realDonal… ""        22215    25834     93625 NA    @CBS @60M… ""       1.83e-224 https://twitter.com/rea…
5 trump.c… "\"This b… 2020-05-… realDonal… GreggJ…    5379    11403     39869 NA    ""         ""       1.81e-224 https://twitter.com/rea…
6 trump.c… "\"OBAMAG… 2020-05-… realDonal… ""        55960    89664    320171 NA    ""         ""       1.81e-224 https://twitter.com/rea…
> corp <- corpus(dat)
> toks <- tokens(corp, remove_punct = TRUE)
> toks_lsd <- tokens_lookup(toks, dictionary =  data_dictionary_LSD2015[1:2])
> dfmat_lsd <- dfm(toks_lsd)
> head(dfmat_lsd)
Document-feature matrix of: 6 documents, 2 features (66.7% sparse).
6 x 2 sparse Matrix of class "dfm"
             features
docs          negative positive
  trump.csv.1        2        0
  trump.csv.2        0        0
  trump.csv.3        0        1
  trump.csv.4        2        1
  trump.csv.5        0        0
  trump.csv.6        0        0

我已经尝试从 readtext 对象中获取所需的列并用它们创建一个新的 data.frame,这没问题,但如果我能将 dfm 结果合并回其他数据。

您需要做的只是将 dfm 转换为 data.frame 并合并。

dat2 <- cbind(data, convert(dfmat_lsd, to = 'data.frame'))

或者,要确保文档顺序与原始文档顺序一致,您可以合并两个数据集:


library(tidyverse)
data_sentiment <- convert(dfm, to = "data.frame") %>% rename(doc_id = document)
dat2 <- left_join(dat, data_sentiment, by = "doc_id")