带有 CountVectorizer 和附加预测器的 sklearn DecisionTreeClassifier

sklearn DecisionTreeClassifier with CountVectorizer and additional predictor

我已经使用 sklearn 的 DecisionTreeClassifier 构建了一个文本分类模型,并且想添加另一个预测器。我的数据位于 pandas 数据框中,列标记为 'Impression'(文本)、'Volume'(浮点数)和 'Cancer'(标签)。我一直只使用印象来预测癌症,但想改用印象和体积来预测癌症。

我之前的代码 运行 没有问题:

X_train, X_test, y_train, y_test = train_test_split(data['Impression'], data['Cancer'], test_size=0.2)

vectorizer = CountVectorizer()
X_train = vectorizer.fit_transform(X_train)
X_test = vectorizer.transform(X_test)

dt = DecisionTreeClassifier(class_weight='balanced', max_depth=6, min_samples_leaf=3, max_leaf_nodes=20)
dt.fit(X_train, y_train)
y_pred = dt.predict(X_test)

我尝试了几种不同的方法来添加音量预测器(更改以粗体显示):

1) 只有 fit_transform 印象

X_train, X_test, y_train, y_test = train_test_split(data[['Impression', 'Volume']], data['Cancer'], test_size=0.2)

vectorizer = CountVectorizer()
X_train['Impression'] = vectorizer.fit_transform(X_train['Impression'])
X_test = vectorizer.transform(X_test)

dt = DecisionTreeClassifier(class_weight='balanced', max_depth=6, min_samples_leaf=3, max_leaf_nodes=20)
dt.fit(X_train, y_train)
y_pred = dt.predict(X_test)

这会引发错误

TypeError: float() argument must be a string or a number, not 'csr_matrix'
...
ValueError: setting an array element with a sequence.

2) 对印象和数量调用 fit_transform。除了 fit_transform 行:

之外的代码与上面相同
X_train = vectorizer.fit_transform(X_train)

这当然会引发错误:

ValueError: Number of labels=1800 does not match number of samples=2
...
X_train.shape
(2, 2)
y_train.shape
(1800,)

我很确定方法 #1 是正确的方法,但我找不到任何教程或解决方案来说明如何将浮点数预测器添加到此文本分类模型中。

如有任何帮助,我们将不胜感激!

您可以使用 hstack 将两个功能组合在一起。

from scipy.sparse import hstack
X_train = vectorizer.fit_transform(X_train)
X_train_new = hstack(X_train, np.array(data['Volume']))

现在您的新火车包含这两个功能。如果我可以建议,请使用 tfidfvectorizer 而不是 countvectorizer,因为 tfidf 考虑每个 document/Impresion 中单词的重要性,而 countvectorizer 只计算单词出现的次数,因此像 "THE" 这样的单词比那些更重要这对我们来说真的很重要。

ColumnTransformer() 正好可以解决这个问题。我们可以将 remainder 参数设置为 ColumnTransformer 中的 passthrough,而不是手动将 CountVectorizer 的输出附加到其他列。

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.compose import make_column_transformer
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd
from sklearn import set_config

set_config(print_changed_only='True', display='diagram')

data = pd.DataFrame({'Impression': ['this is the first text',
                                    'second one goes like this',
                                    'third one is very short',
                                    'This is the final statement'],
                     'Volume': [123, 1, 2, 123],
                     'Cancer': [1, 0, 0, 1]})

X_train, X_test, y_train, y_test = train_test_split(
    data[['Impression', 'Volume']], data['Cancer'], test_size=0.5)

ct = make_column_transformer(
    (CountVectorizer(), 'Impression'), remainder='passthrough')

pipeline = make_pipeline(ct, DecisionTreeClassifier())
pipeline.fit(X_train, y_train)
pipeline.score(X_test, y_test)

使用 0.23.0 版本,查看管道对象的视觉效果(display param in set_config